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Farm size has become a key variable of interest in discussions 
surrounding food security, development, and the environ-
ment1. Most of the world’s farms are small—of the 570 million 

farms in the world, 84% are <2 ha in size2. Smallholders are facing 
growing pressure on their livelihoods from low prices in global mar-
kets and climate change-induced production losses3. Accordingly, 
smallholders have been the target of global development policies 
such as the Sustainable Development Goal (SDG) target 2.3, which 
seeks to support smallholders by increasing their productivity, 
incomes, and access to land. Many countries’ Intended Nationally 
Determined Contributions (INDCs) of the UN Conference of 
Parties on Climate Change (COP21) also aim to bolster smallhold-
ers’ adaptive capacity.

Numerous scholars argue that smaller farms perform better than 
larger farms in terms of production, environmental, and socioeco-
nomic outcomes4. On the basis of these arguments, scholars, policy 
makers, and social movements argue in favour of land reforms to 
redistribute farmland5,6. Although 84% of the world’s farms are 
<2 ha in size, they only constitute 12% of farmland—increasing the 
proportion of farmland in smaller farms will arguably increase its 
benefits. At the same time, consumers have increased their willing-
ness to pay for products with labels associated with smaller farms7,8. 
Thus, there is a growing call for support for small farms. While this 
support is important, the performance of small farms in terms of 
productivity, resource efficiency, biodiversity, and greenhouse gas 
(GHG) emissions has itself remained highly contested9–14.

Here, we synthesize the relationship between farm size and six 
socioeconomic and environmental outcomes, leveraging the past 
50 yr of empirical evidence that directly assessed crop production, 
environmental performance, and economic outcomes as they relate 
to farm size. Our systematic assessment of the multidimensional 
outcomes related to farm size builds on past reviews that focused 
on single outcomes (for example, yield, economic performance, 
or biodiversity metrics for specific species)15–18, non-systematic 
reviews15,16, studies based on indirect measurements of farm size 
and the outcome variables of interest19–21, and studies with specific  

regional foci15,17. We present evidence from 118 studies (318 observa-
tions) from 51 countries/regions on the relationship between relative 
farm size (along a continuum) and: (1) yields as value of crop out-
put per area (value ha–1) or total crop production per area (kg ha–1),  
(2) crop diversity at species and varietal levels, (3) non-crop biodi-
versity at field and landscape levels, (4) resource-use efficiency as 
measured in terms of technical efficiency22, (5) GHG emissions per 
unit output, and (6) profit per unit area.

Results
Our analysis finds that smaller farms have higher yields and har-
bour greater crop diversity and higher levels of non-crop biodiver-
sity at the field and landscape scales than larger farms (Table 1). We 
find no conclusive evidence for a relationship between farm size and 
resource-use efficiency, GHG emissions, or profit. In the remainder 
of this article, we will address each of these key findings in turn and 
discuss their implications for policy initiatives and consumer sup-
port for small farms globally.

Smaller farms have higher yields. Our synthesis shows that, in 
the literature, when primary studies assess yield across farm sizes, 
79% (95% confidence interval, CI = 58–100%) of them report that 
smaller farms have higher yields (in either weight ha–1 and value ha–1 
terms) (Fig. 1). We also find that yields typically decrease by 14% for 
each hectare increase in farm size (−14% mean effect; 95% CI = −21 
to −7%; Fig. 2a and Fig. 3), within the range of studied observations 
(range = 0.23 to 133 ha, mean = 9.1 ha; s.d. = 17.8 ha). While the dis-
tribution of effects includes deviant cases (Fig. 3 and Supplementary 
Fig. 1), these new findings show that, on average, the available  
evidence supports the idea—which originated in the 1920s and has 
been studied extensively since the 1960s—that smaller farms are 
higher yielding than larger farms14,23,24. We found that this inverse 
yield relationship held across studies that measured yield as weight/
area, but not as value/area. Some of the moderators in our analysis 
are different from 0 (Fig. 2b), but we note that our moderator anal-
ysis was not conducted using simultaneous inference and sample 
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sizes are small. Additional work and more studies are likely required 
to gain certainty in what drives the inverse yield relationship.

Smaller farms have greater crop diversity. While many field studies 
have explored in situ crop diversity on small farms25–27, few directly 
measured the relationship between farm size and crop diversity. 
In our review, four studies show higher crop diversity on smaller 
farms, while three found the opposite; much too small a sample 
for statistical inference. But we previously conducted an in-depth 
quantitative analysis on the relationship between crop diversity and 
farm size across 55 countries and 154 crops using a newly harmo-
nized dataset of nationally representative farmer surveys and agri-
cultural censuses28. We found that, except for an unexplained dip in 
the 2–5 ha size range, there is a strong inverse relationship globally 
between farm size and the number of crop species found across the 
landscape—with higher species diversity within smaller farms than 
larger farms when controlling for area (Supplementary Fig. 2). Crop 
diversity on small farms is selected by farmers for a range of reasons 
such as improved nutrition29, market diversification30 and mitiga-
tion of drought risk31.

Smaller farms harbour greater non-crop biodiversity. There 
are three key pathways by which smaller farms could be benefi-
cial for non-crop biodiversity covered in the literature. The first is 
through ecological management practices, such as limited insecti-
cide use and use of organic management practices. The second is 
through increased field edges (increased margin-to-field area ratio); 
increased field edges can lead to larger available breeding habi-
tats for arthropods32,33, provide refuge for arthropods and smaller 
species to colonize after escaping recently disturbed fields34,35, 
increase the number of pollinators and beneficial predators within 
fields4,33 and act as conservation corridors for arthropods and small 
mammals36,37. The third is through landscape composition, with 
small-farm-dominated landscapes harbouring diverse land cover 
types such as forests and wetlands, fields of different crops or fields 
in different phenological stages of production38,39. In the studies we 

reviewed, there is evidence for all of these effects. When combined, 
77% of studies (95% CI = 61–99%) reported that smaller farms and 
fields have greater biodiversity at the farm and landscape levels 
compared to larger farms and fields (Fig. 1).

The three remaining variables we tested—GHG emissions, 
resource-use efficiency, and profits—did not show conclusive rela-
tionships for the effect size magnitude and sign (Figs. 2, 4, and 5), 
even though the majority of studies concluded that larger farms 

Table 1 | Main results and mechanisms

Variable Result Mechanisms favouring small farms Mechanisms favouring large farms

Yield Smaller farms have  
higher yields

Reliance on family labour (for example, Fig. 2). Mechanization enables higher yields with less 
labour but is only cost-effective on larger fields56.

Biodiversity (non-crop) Smaller farms have  
higher biodiversity

Smaller fields have more edges that provide 
habitat5,35,57.
Independently managed smaller fields and 
farms may create a more heterogeneous 
landscape58.

The link between field and farm size is relatively 
understudied; large farms with small fields may 
also benefit biodiversity but this was untested in 
the reviewed literature.

Crop diversity Smaller farms have  
higher crop diversity

Subsistence farmers plant a greater diversity of 
traditional crops to meet nutritional needs29.
Small farms are incentivized to cultivate 
landraces when there are niche markets for 
traditional crops30.

Varietal diversity requires a minimum amount 
of space to prevent genetic erosion for 
wind-pollinated crops59,60.
Diversified crops can reduce long-term risk at the 
expense of short-term profit, which may require 
financial buffers61,62.

Resource-use efficiency Inconclusive evidence In contexts where off-farm labour 
opportunities were greater, there was less 
available on-farm family labour and, in turn, 
greater technical efficiency63.

Increased access to information from extension 
and advisory services was associated with 
greater technical efficiency, which is often only 
cost-effective on larger fields63–66.

GHG emissions Inconclusive evidence Smaller farms may use less input-intensive 
production methods but this was untested in 
the reviewed literature.

Agricultural mechanization can enable higher 
yields with less input use, and mechanization is 
often only cost-effective on larger fields56.

Profit Inconclusive evidence Specialty markets for traditional foods offer 
higher prices30.
Smallholder credit access can increase access 
to inputs and markets67.

Better market access for larger farms68,69.
Recovering fixed costs requires a minimum scale68,70.
Better access to land-based subsidies71.
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Fig. 1 | the probability of studies finding relationships between farm size 
and each outcome variable.  Results are as per the vote count findings 
(for example, small farms have more biodiversity when compared to larger 
farms, compared to no trend emerging between farm size and profitability). 
a–d, Results are shown for the following outcome variables: yield (a), 
biodiversity (b), resource efficiency (c), and profitability (d). The average 
and 95% CIs are given (see Supplementary Table 3 for underlying data). 
Note, GHG emission studies were typically on individual farms so we could 
not conduct vote counts on this variable.
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had greater resource efficiency than smaller farms (Fig. 1). For 
example, while the evidence we reviewed shows that GHG emis-
sions per unit output tend to be higher on smaller farms, suggesting 
that smaller farms might be less efficient per unit output, the con-
fidence intervals around this effect crossed zero (−4% mean effect; 
95% CI = −10–2%). We found no clear difference between small or 
large farms in technical efficiency (our proxy for resource efficiency 
per unit output with 3% mean effect; 95% CI = −1–7%), or only a 
small effect after controlling for a variety of moderating factors, 
such as access to credit, extension services or cooperative member-
ship (Fig. 2c). See the Supplementary Information for further dis-
cussion of these results. Similarly, while profitability per unit area 
also declined with increasing farm size, statistical confidence in the 
effect was also low (11% mean effect; 95% CI = −10–32%) (Fig. 2a).

Discussion
Our evidence review and meta-analysis of the current evidence base 
for these six outcomes associated with farm size finds strong sup-
port for the inverse farm size–productivity and farm size–diversity 
relationship (empirical findings that both have strong theoretical 
support24,40–42). A couple of emerging studies43,44, with limited cov-
erage, suggest that the inverse size–productivity relationship might 
simply be a result of measurement errors; we were unable to rule out 

this possibility. Similarly, we recognize that sociopolitical context is 
important and small farms may not always be more biodiverse45 but 
most of the evidence base across a broad geographic range of agri-
cultural systems is in support of this positive relationship.

An important caveat to interpreting the past literature for each of 
these outcomes are regional biases and variation. Regional biases are 
most evident in the biodiversity literature that has predominantly 
focused on higher-income countries, mainly in North America and 
Europe (Supplementary Fig. 4). Different regions may contain spe-
cies that prefer environments that larger farms foster, either through 
their larger fields or different farm management techniques (Table 1). 
While we could not test for these factors explicitly due to our sample 
size, a dominant theme in the literature for other indicators (yield, 
profitability, and resource efficiency) was that a farm’s political, 
socioeconomic, and geographic context (a farmer’s access to train-
ing, credit, machinery, insurance, inputs, markets, and/or subsidies) 
may explain the farm size to outcome relationships. For instance, 
the relationships between farm size, resource efficiency, and profit 
were the most spatially heterogeneous across all variables exam-
ined. For certain smallholder-dominant countries (for example,  
India and Ethiopia) we found that smaller farms were more profit-
able, whereas larger farms were more profitable in countries domi-
nated by large farms, higher incomes, and better rural infrastructure 

Resource efficiency (n = 17)
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    Yield = value/area (n = 17)

    Yield = weight/area (n = 13)
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Fig. 2 | the pooled effect sizes for each outcome variable that show the percent change per 1 ha increase in farm size. a, Pooled effect size per variable 
as derived from the random effect meta-regressions. The vertical black line indicates the 1:1 response ratio where, for a 1-ha change in farm size, there is 
no change in the outcome variable. A response ratio <0 suggests that smaller farms have a higher effect (for example, smaller farms have higher yields) 
and, if it is >0, then larger farms have a higher effect. The number of observations (n) and 95% CIs are given per variable. b, For yield, sensitivity analyses 
fit separate models to explore heterogeneity in the effect for studies that controlled for common explanations for the inverse farm size–yield relationship: 
institutional characteristics, farm management and family labour. c, For resource-use efficiency, separate models were fit to test if the effect was 
moderated by common development interventions to improve smallholder resource-use efficiency: extension access, farmer cooperatives/groups, and 
credit access. Profit and GHG emissions had no additional models. Note, biodiversity studies typically did not include regression coefficients, so we could 
not conduct a random effects meta-regression. (See Supplementary Table 4 for underlying data).
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(for example, the United States). This may suggest that smallhold-
ers have better access to markets, inputs, and technologies in a 
smallholder-dominant system that may affect their profitability and 
resource efficiency (see Supplementary Information for expanded 
discussion).

Systematic evidence syntheses, such as meta-analyses, are an 
iterative process46. For some of the outcomes (such as GHG emis-
sions, profits, and resource-use efficiency) we were unable to 
identify consistent or confident outcomes from the existing liter-
ature. This may be due to the small number of included studies, 
limited cross-country analyses, or that these relationships are too 
context-specific to be generalized. Future work should continue 
to assess these outcomes and build on this study to include other 
important outcomes, such as mental and physical health of workers 
and farmers, employment opportunities, pesticide or fertilizer use 
efficiency, and other key ecosystem services, such as pollination, in 

addition to examining literature in languages other than English. 
New primary work is also needed to further explore the functional 
form of the effects we present here, and to explore how different 
socioecological and political conditions and measurement methods 
may mediate positive or negative outcomes across farm size classes. 
This could further inform policies on land reform (such as redistri-
bution or consolidation) that address market failures so that such 
policies can maximize the multidimensional benefits of farming 
systems to society47.

To support sustainable transitions in farming practices across 
a range of farm sizes, more evidence-based synthesis is needed at 
broad regional scales. Until recently, the role of farm size in the 
global food system has been largely assessed by independent case 
studies. As international commitments (for example, SDGs and 
COP21 INDCs) begin to evolve into actionable funding plans and 
as countries continue to decide on land use policies that directly 
affect the size of farms, it is critical to identify how farm size affects 
different social, economic and environmental outcomes.

Headey 2014 (a) − Ethiopia (maize) (n = 265)

Headey 2014 (b) − Ethiopia (teff) (n = 229)

Carletto 2013 − Uganda (maize) (n = 2,609)

Barrett 2010 − Madagascar (rice) (n = 286)

Stifel 2008 − Madagascar (rice) (n = 1,939)

Benjamin 1995 (a) − Indonesia (many) (n = 5,486)

Rada 2015 (a) − China (wheat) (n = 17,794)

Rada 2015 (b) − China (maize) (n = 12,478)

Assuncao 2007 − India (many) (n = 8,906)

Rada 2015 (c) − China (rice) (n = 8,589)

Benjamin 1995 (b) − Indonesia (rice) (n = 5,486)

Ghose 1979 (a) − India (many) (n = 148)

Li 2013 − China (many) (n = 2,155)

Carter 1984 − India (many) (n = 358)

Kagin 2016 − Mexico (many) (n = 1,361)

Newell 1997 − India (many) (n = 386)

Ghose 1979 (e) − India (many) (n = 85)

Ghose 1979 (d) − India (many) (n = 149)

Ghose 1979 (b) − India (many) (n = 100)

Chen 2011 − China (many) (n = 2,693)

Ghose 1979 (c) − India (many) (n = 100)

Ghose 1979 (f) − India (many) (n = 150)

Ghose 1979 (g) − India (many) (n = 94)
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Fig. 3 | Forest plot for yields, where observations are in standardized 
form and 95% Ci are given. The size of each point estimate relates to the 
inverse standard error. The pooled effect and 95% CI are given in the lower 
plot. The country, crop name, and sample size (n) for each observation are 
given on the y axis. ‘National’ sample sizes indicate that the author used 
tabulated national statistics and did not include the sample size. Please 
see the source data in the Supplementary Information for complete list of 
references shown in the figure.

Majumder 2016 (e) − Bangladesh (rice) (n = 944)

Haji 2007 − Ethiopia (many) (n = 150)

Majumder 2016 (c) − Bangladesh (rice) (n = 944)

Binici 2006 − Turkey (cotton) (n = 54)

Abedullah 2007 − Pakistan (rice) (n = 200)

Wang 2010 − China (wheat) (n = 432)

Tolga 2009 − Turkey (rice) (n = 70)

Bojnec 2013 − Slovenia (many) (n = 1,784)

Kilic 2009 − Turkey (hazelnut) (n = 78)

Hussien 2011 − Ethiopia (many) (n = 252)

Omonona 2010 − Nigeria (cowpea) (n = 120)

Alene 2003 − Ethiopia (maize) (n = 60)

Majumder 2016 (d) − Bangladesh (rice) (n = 944)

Kulekci 2010 − Turkey (sunflower) (n = 117)

Majumder 2016 (a) − Bangladesh (rice) (n = 944)

Majumder 2016 (b) − Bangladesh (rice) (n = 944)

Abdallah 2016 − Ghana (maize) (n = 569)
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Pooled effect 3.16 (−1 to 7.3)
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Fig. 4 | Forest plot for resource efficiency, where observations are in 
standardized form and 95% Ci are given. The size of each point estimate 
relates to the inverse standard error. The pooled effect and 95% CI are 
given in the lower plot. The country, crop name, and sample size (n) for 
each observation are given on the y axis. ‘National’ sample sizes indicate 
that the author used tabulated national statistics and did not include the 
sample size. Please see the source data in the Supplementary Information 
for complete list of references shown in the figure.
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Our study lends evidence to boost support for policies target-
ing smallholders. Most of the world’s farms (84%) are operated 
by smallholders2 and smallholders in lower-income countries are 
also among the poorest people on the planet48. Our study shows 
that smallholders are both productive and stewards of biodiversity. 
Rewarding smaller farms for their conservation benefits may be 
one policy pathway towards supporting smallholders. Biodiversity 
could be promoted on larger farms by promoting more ecologically 
friendly management practices and increasing biodiversity refuges 
such as buffer strips and increased natural perimeters.

These findings come at a time where donor countries need to 
invest an estimated US$14 billion annually to achieve the goal of 
SDG 2.3 to double the incomes and productivity of smallholders48. 
Our review adds to the motivation for these investments. We found 
that, despite smallholders’ increased yields and role in provision of 
ecosystem services, there is not enough evidence for equivalent gains 
in smallholders’ profits. Thus, development support for smallhold-
ers is imperative from multiple viewpoints: the data not only show 
that investing in smallholders could lead to humanitarian benefits 
but also to increases in food production and benefits to biodiversity. 

Such a triple reward confirms that support for smallholders globally 
is an essential pathway for sustainable development.

Methods
A meta-analysis was conducted using the PRISMA guidelines49 (see Supplementary 
Fig. 3 for inclusions/omissions and Supplementary Table 1 for Boolean search 
terms). Below, we outline our data collection and synthesis methods.

Data. We searched the Web of Science and Scopus databases for studies in  
English published before December 2017. We used four inclusion criteria:  
(1) peer-reviewed; (2) directly measured farm size and the outcome variable(s) of 
interest; (3) reported error estimates/significance tests in determining effect size; 
and (4) compared farms with similar management systems (for example, compared 
small and large cereal farms, not small vegetable farms to large cereal farms) or 
controlled for the cropping systems’ differences (for example, converted different 
crops to their value amount and/or controlled for the different types of crop species 
planted). It should be noted that different studies used different measures of farm 
size (e.g. “plot size”, “area under cultivation”, etc.); the agricultural economics 
community that has predominantly studied the inverse size-yield relationship  
does not seem to have converged on a common measure to our knowledge.  
The inclusion of studies that compared farms with similar management systems 
enabled us to examine if policies should target certain farm sizes to grow particular 
crops. Future research may want to omit this inclusion criteria to examine policy 
questions relevant to which types of crops should a country grow given their farm 
size distribution.

Studies were coded at the observational level to analyse multiple crops, years 
and locations per study; studies had multiple observations if they separately 
reported different crops, years and/or locations per outcome variable. The main 
conclusions were categorically coded as vote counts, where an increase in farm 
size was associated with a decrease, increase or null relationship to the variable 
of interest (we found no non-monotonic results in the literature). For yield, 
resource-use efficiency and profit, we extracted several additional variables to 
calculate pooled effect sizes of regression model coefficients. To augment the 
sparse crop diversity and GHG emission literature on farm size, we used results 
from Ricciardi et al.28 and Clark & Tilman’s (2017)50 dataset, respectively. We 
leveraged the Clark & Tilman meta-analysis database containing 742 agricultural 
life-cycle analysis observations from 152 unique studies50; we coded observations 
that reported average farm size to construct a dataset containing crop species, 
GHG emissions per unit output (in CO2 equivalents), average farm size and sample 
size for 100 observations (11 studies) that met our inclusion criteria. As part of 
our systematic assessment we extracted information from the broader literature 
on causal mechanisms behind the main trends, as well as factors that caused 
deviations from the main trends (Table 1).

Our search yielded 1,474 studies. In total, we identified 118 studies  
(318 observations) that met our inclusion criteria. From these, we included  
seven solely in the life-cycle analysis and coded 111 studies (218 observations)  
as vote counts, of which we extracted regression coefficients from 34 studies  
(58 observations) (Supplementary Table 2 shows summary statistics).

Synthesis of results. We ran three types of meta-regressions to synthesize the vote 
count findings, extracted regression slopes and the GHG emission estimates. Due 
to differing data availability across variables (for example, biodiversity studies did 
not typically report regression coefficients), not all variables were analysed in each 
meta-regression. First, we used cumulative link multilevel models (CLMM) to 
synthesize the ordinal vote count findings for yield, resource-use efficiency, profit 
and biodiversity51,52. We used CLMMs to examine the probability of the ordinal 
outcome variable (observation finding negative, null or positive relationships 
with farm size). For all CLMM and subsequent models (detailed in the following 
paragraphs), we set the study as a random effect. Hierarchical models are 
commonplace in meta-analyses and applied in our study because of the a priori 
expectation that observations within studies and across similar crop types would 
be correlated in the response, with random effects allowing us to account for 
non-independence. In addition, as used in meta-analyses, random effects estimate 
a variance component in addition to the sampling variance that fixed effects 
models assume; this extra variance component has enabled meta-analyses using 
random effects to be applied more generally and allows data to be interpreted  
as a random population of outcomes instead of a single ‘true effect’, as is a  
common interpretation of fixed effects meta-analyses46. For yields and non-crop 
biodiversity, we also set crop type as random effects. For non-crop biodiversity, 
we also set non-crop species type as a random effect. We tested if the additional 
random effects used for yields and non-crop biodiversity changed the results 
compared to using only studies as random effects and found no differences in our 
conclusions.

Second, we used hierarchical meta-regressions of the standardized  
regression slopes and standard errors53,54 to calculate pooled effects for 
yield, resource-use efficiency and profit. Since certain variables contained 
multiple currencies, efficiency units or measurement metrics, we relied on the 
Rodríguez-Barranco et al. technique to convert farm size regression coefficients 

Gaurav 2015 − India (many) (n = 74,843)

Rada 2015 (c) − China (maize) (n = 6,542)

Rada 2015 (a) − China (rice) (n = 8,004)

Rada 2015 (b) − China (wheat) (n = 4,831)

Li 2013 − China (many) (n = 2,155)

Rahman 2016 (b) − Nigeria (yam) (n = 400)

Rahman 2016 (a) − Nigeria (cassava) (n = 400)

Lamb 2003 − India (many) (n = 1,060)

Savastano 2009 − Kyrgyzstan (many) (n = 114)

Dauda 2009 − Nigeria (many) (n = 450)

Rahman 2016 (c) − Nigeria (rice) (n = 400)

0 50 100 150 200

Pooled effect 11.23 (−10 to 32.5)

0 50 100 150 200
Percentage change

Fig. 5 | Forest plot for profitability, where observations are in standardized 
form and 95% Ci are given. The size of each point estimate relates to the 
inverse standard error. The pooled effect and 95% CI are given in the lower 
plot. The country, crop name, and sample size (n) for each observation 
are given on the y axis. Please see the source data in the Supplementary 
Information for complete list of references shown in the figure.
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and standard errors into standardized regression coefficients55. We note that this 
approach does not correct for bias resulting from transformation, but the extent 
of this problem is difficult to determine for many of the individual studies for 
which raw data are unavailable. Our standardized coefficients represent a relative 
change in the outcome variable per 1-ha change in farm size (we note that these 
coefficients are limited by the range of the underlying farm sizes in each study 
and should not be extrapolated). We used a linear model to synthesize results 
because the literature predominantly provided linear coefficients. We used the 
same random effects variable set up as in the CLMM models. Sensitivity tests 
were conducted through cumulative meta-regressions for continuous variables 
(for example, year of study and average farm size study observed) and subsetted 
meta-regression for categorical variables (for example, type of diversity metric 
used, if resource efficiency was derived from data envelopment analysis or 
stochastic frontier and so on). We also ran robust regressions to test for sensitivity 
to distributional assumptions and to weighting choice. All sensitivity tests found 
no differences in results. Forest plots are given in Figs. 3–5. An inclusion of bias 
analysis was conducted through funnel plots that compare the observed outcomes 
to standard errors. There were no clear biases for yields and resource efficiency but 
a slight positive bias for profit (Supplementary Fig. 5).

This meta-regression framework also enabled us to further test if the variation 
in findings between different studies could be attributed to the inclusion/omission 
of variables that authors used when estimating the relationship between farm size 
and the variable of interest, through sensitivity analyses using moderators. For 
yield, we assessed the importance of moderators such as the types of production 
methods, institutional characteristics (credit markets and access, extension access 
and involvement in farmer cooperatives) and types of labour (general labour 
market imperfections, family labour and household size). Our logic was that,  
if the relationship is moderated by these factors (for example, if the main 
relationship became null), it would indicate that there is a systematic variable 
omission bias in the literature that, once corrected for, could explain the inverse 
farm size to yield relationship. For resource-use efficiency, we conducted similar 
sensitivity analyses, by including moderators that described development 
interventions (credit access, extension access or farmer group membership). Our 
key hypothesis was that having similar access to credit, extension or inputs and 
markets (through farmer groups) may enable small farms to be equally or more 
efficient than large farms.

Third, for the GHG emission observations, we used robust linear mixed-effects 
models where we set the study and crop type as random effects. To estimate GHG 
emissions per unit output, we used the log average farm size of a study as a fixed 
effect. The key difference in the GHG emission model is that the data are at the 
aggregated farm level, as opposed to extracted regression coefficients for the yield, 
resource-use efficiency and profit models. (Formulas and further detail on each 
meta-regression used are available in the Supplementary information.)

Data availability
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Information. Source data are provided with this paper.
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