Session A01

Conservation Planning for Biodiversity: Landscape Context and Site Design

Bruce Taylor - Defenders of Wildlife
Catherine Macdonald - The Nature Conservancy
Hugh Brown - Ball State University
Living Lands:
Helping Land Trusts Conserve Biodiversity
Living Lands Mission

- To support and increase the capacity of the land trust community to conserve biodiversity on private lands through financial and technical assistance.
Survey results

Total response
- 135 land trusts
Mission includes habitat: 97%
... a primary focus: 60%
Active management for biodiversity on most properties: 29%
Habitat restoration: 17%
Barriers to biodiversity conservation

Most common:

- Limited funding for stewardship and monitoring
- Limited staff capacity
- Limited expertise
Living Lands Project

Rally 2006: Biodiversity Track
- Conservation planning
- Funding sources
- Agricultural easements
- Habitat restoration

Technical materials

Grants up to $10,000

www.defenders.org/livinglands
Conservation planning for biodiversity

Identifying priority areas
- Catherine Macdonald, The Nature Conservancy of Oregon

Site management for biodiversity
- Hugh J. Brown, Ball State University and Red-Tail Conservancy (Indiana)
Conserving Biodiversity: Landscape Context

Catherine Macdonald
Land Trust Alliance
October 2006
Objectives

- Overview of the status of biodiversity
- Review the scientific foundation and approaches used in regional planning
- Importance of being strategic in your land protection decisions
Crisis Ecoregions

- Critically Endangered
- Endangered
- Vulnerable
Proportion of US Species At-Risk

- Freshwater Mussels
- Crayfishes
- Amphibians
- Freshwater Fishes
- Flowering Plants
- Conifers
- Ferns
- Tiger Beetles
- Dragonflies/Damselflies
- Reptiles
- Butterflies/Skippers
- Mammals
- Birds

(Stein and Flack 2000)
Distribution of Imperiled Species

(Stein et al. 2000)
Operating Assumption

- Actively managed network of lands dedicated to conservation
- Surrounded by semi-natural matrix lands, managed compatibly with conservation goals, and
- Supported by practices and regulations that keep overall conditions relatively healthy
Essential Questions

- Where should we work?
- What should we do when we get there?
Essential Questions

- Where should we work?
- What should we do when we get there?
History of Land Protection
Percentage of Habitat Designated for Conservation

- Temp Conifer Forests
- Deserts
- Tundra
- Boreal Forests
- Mediterranean
- Broadleaf Forests
- Trop Grasslands
- Temp Grasslands
- Trop Conifer Forests

Percent Area

(The Nature Conservancy 2006)
Systematic Multi-Species Planning

- Driven by wildlife biologists
- Informed by research in landscape ecology and conservation biology
- Aided by new technologies
Key Background Work

- Margulus and Uscher (1981)
- Pressey (1993)
- Noss and Cooperrider (1994)
- Margulus and Pressey (2000)
- Groves (2003)
Regional Conservation Plans

- Clearly identification of planning targets
- Set explicit goals
- Strive for efficiency
- Use simple, explicit methods
- Identify priorities
- Address long-term conservation needs

(Margulus & Pressy 2000)
Regional Planning Process

- Identify biodiversity
- Assemble data
- Assess existing conservation network
- Set Goals
- Evaluate the viability of the occurrences
- Analyze data to select a network of conservation areas
- Assess threats and set priorities
Important Characteristics of Regional Conservation Networks

- Representative
- Resilient
- Redundant
- Restorative

(Groves 2003)
Important Characteristics of Regional Conservation Networks

- Representative
- Resilient
- Redundant
- Restorative

(Groves 2003)
Representative

Capture the diversity of the planning area

- Imperiled, declining and endemic species
- Ecological systems
- Individual plant communities
- Important aggregation sites
Biodiversity and scale

Geographic scale

REGIONAL
Grizzly Bear, lynx, wolverine, anadromous salmonids

COARSE
Bull trout, sage grouse, black bear

INTERMEDIATE
Ground squirrels

LOCAL
Butterfly
Redundancy

- Populations/occurrences
- Distribution of occurrences
- Habitat area
Efficiency

- Existing conservation network
- How to best build on that network
 - Cost of conservation
 - Threats
Data Assembly

- Vegetation
- Species
- Ownership
- Protected Areas
- Suitability
Assembling the Portfolio

- Vegetation/Habitat
- Species
- Suitability or Cost
- Managed Areas

Data Analysis

Conservation Network
Final Portfolio
Ecoregional Plans

Klamath Siskiyou Mtns

Bering Sea

Canadian Rocky Mtns
State Conservation Strategies

Florida: Closing the Gaps

Strategic Habitat Conservation Areas 1994

Washington’s Comprehensive Wildlife Conservation Strategy
Development Stages of a Land Trust

<table>
<thead>
<tr>
<th>Stage</th>
<th>Activity</th>
<th>Approach</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming</td>
<td>Need easement to prove concept</td>
<td>Opportunistic</td>
<td>Local</td>
</tr>
<tr>
<td>Progress</td>
<td>Criteria to accept easements</td>
<td>Opportunistic/Proactive</td>
<td>Service Area</td>
</tr>
<tr>
<td>Mature</td>
<td>Accept and Seek Easements</td>
<td>Proactive</td>
<td>Service Area +</td>
</tr>
<tr>
<td>Advanced</td>
<td>Use diverse tools</td>
<td>Strategic</td>
<td>Regional</td>
</tr>
</tbody>
</table>
Session A01

Conservation Planning for Biodiversity: Landscape Context and Site Design

Bruce Taylor - Defenders of Wildlife
Catherine Macdonald - The Nature Conservancy
Hugh Brown - Ball State University

Living Lands Project
Biodiversity and Site Management

Hugh J. Brown
Ball State University
Muncie Indiana
Overview

- Introduction
- Threats to biodiversity
- Tools for planning
- Management planning
- Partners and resources
- Case studies
LTA Standards and Practices

• Standard 8 Evaluating and Selecting Conservation Projects
• Standard 11 Conservation Easement Stewardship
• Standard 12 Fee Land Management
Importance of Management

- Fee land management is essential to protecting conservation values.
- Failure to protect conservation values may result in the land trust being barred from functioning as a 501(c) (3) organization.
• Conservation values are defined in IRC Section 170(h) to include:
 – Land areas for outdoor recreation by or for the education of the general public,
 – Protection of a relatively natural habitat of fish, wildlife, or plants, or similar ecosystem,
 – Farmland and forest land for scenic enjoyment of the general public, or pursuant to a clearly delineated Federal, State, or local governmental conservation policy
 – Historically important land area or a certified historic structure.
Goals of Land Management

- In addition to legally defined requirements, the goals of land management might include:
 - Maintaining or improving biodiversity
 - Providing ecosystem services (water purification, C sequestration, etc.)
 - Sense of place and community
 - Aesthetics and beauty
Relationship to Project Selection and Project Planning

- Selection includes evaluating site in the context of the land trust’s mission statement and policy for land acquisition
- Project planning determines whether property acquisition is feasible and appropriate
- Land management planning is the stewardship applied after gaining control
Fee Land Management Compared to CE

- Land trusts with fee lands are responsible parties
- Land owner of CE is responsible for maintenance of conservation value
- Land trusts can assist landowners with management
- Separate CE agreement and land management plan
Biodiversity Status

- **Endangered species**
 - 398 animals
 - 599 plants

- **Threatened species**
 - 129 animals
 - 146 plants

Biodiversity Status 2

• Over a thousand species have plans
• About 350 species have been stabilized
• 16 species moved from endangered (to less threatened)
• 10 species have been delisted

Biodiversity Status 3

- Terrestrial Vegetation of the U.S.
 - Cooperative project between the Nature Conservancy and the Natural Heritage Network
 - Based on a combination of physiognomic and floristic characteristics
 - Identified seven classes and 4,149 associations

http://www.natureserve.org/publications/library.jsp

Living Lands Project
Biodiversity Status 4

State of the Union: Ranking America’s Biodiversity

- Scientists have documented more than 200,000 species in the US (10% of global)
- We are a center of diversity for salamanders, mussels, and turtles
- About 1/3 of well known species are at risk
- Habitat destruction and degradation; and alien species are major threats

http://www.natureserve.org/Reports/stateofunions.pdf
Protection of Biodiversity

Living Lands Project
Role of Disturbance

- Natural
 - Tree fall
 - Change in hydrology (e.g. beaver pond)
 - Grazing

- Human induced
 - Vegetation removal
 - Ditching or dredging
 - Road or trail construction

- Scale of disturbance

- Frequency
Threats

- Identify threats or stresses to the health of the ecosystem
- Threats include
 - Changes in hydrology
 - Fire and fire suppression
 - Plant diseases and insect infestations
 - Invasion of exotic species, etc.
 - Overgrazing by deer or other herbivores
Invasive Species

- Often out compete native species (esp. in stressed systems)
- Includes both plants and animals (list is extensive)
- Controls are expensive and time consuming
Excessive Herbivory

- White tail deer and other species may degrade plants at low heights
- Deer damage can occur at 10 animals per square mile (or less)
Hydrologic Alteration

- Most agricultural lands have been drained by tiles and ditches
- Urban areas often have more runoff and flooding because of impervious surfaces
- Wetlands may suffer from less (or more) water and degraded water quality
Fire Regime

- Fire was a natural disturbance in many ecosystems
- Fire suppression has resulted in greater fuel loads which can lead to more intense burns
- Interval and intensity of fire help determine communities and structure
- Example: Lack of fire causes canopy closure and increase in shade tolerant species
Erosion and Sedimentation

- Soil loss decreases productivity and removes seed bank
- Sediment in water bodies decreases photosynthesis, covers non-mobile organisms
Other Human Activity

In addition to “natural” threats, human misuse of a site is also a threat in many locations.

- Trails (foot, bike, vehicle, horse, etc.)
- Dumping, littering, etc.
- Hazardous waste disposal
- Hunting/harvesting
- of game or plants
Tools for Planning
Conservation Design

• Core area or buffer?
• Size of parcel: Will it support diverse communities?
 – Varying species have widely different area requirements
• Shape: How much edge effect?
Connectivity

- Consider adjacent properties
 - High quality sites can disperse natives
 - Poor quality sites can increase invasive species
- Corridors for wildlife
- Fragmentation/isolation
Site Context

- Surrounding land uses
- Local development trends
- Demographics of local community
- Anticipated public use needs that this property may be expected to fulfill
Assess Current Communities:
Size (acres) and % of original
Number of occurrences and sufficiency of occurrences to support community
Quality of communities and % under protection
Degree of fragmentation and isolation
Source: Chicago Wilderness
Assessment (cont.)

-Extent and effectiveness of current management
-Status of community (imperiled or secure)
-Can develop rating system to target which communities need highest level of protection and/or management

Source: Chicago Wilderness
Active or Passive?

• Letting nature take its course may not work
• Landscape is so human altered that natural processes are limited
• Most systems require intentional management
Site Activities

- Preservation (protection of existing communities)
- Restoration (establishment of a community similar to a reference one)
- Reconstruction or rehabilitation (establishment of a functional community unlike the reference)
- Succession and passive management (letting nature take its course)
Preservation

- Appropriate for sites with relatively intact, functional ecosystems
- Key is to minimize human-induced disturbance
- Manage to continue historical conditions
Restoration

- Determine historical communities
 - Public land survey records
 - Soil characteristics (esp. drainage)
 - Neighboring communities in similar landscape positions
- Plant/introduce appropriate species
- Manage site to support communities
Restoration

- An excellent description of the range of restoration practices is available on the Society for Ecological Restoration’s website (see http://www.ser.org/content/ecological_restoration_primer.asp)
Rehabilitation/Reconstruction

- Determine community based on site characteristics and property goals
- Develop species list
- Modify site to support introductions
- Use native species and appropriate landscape design
Land Management Planning

- Steps in site planning:
 - Collect information
 - Determine conservation priorities
 - Set goals and objectives
 - Develop work plan
 - Implement plan
 - Monitor and assess
 - Review and revise
Collect Site Information

- Property name and location with directions
- Contact information for responsible person(s) e.g. stewardship coordinator
- Legal documents including deed or title insurance documents
- Zoning and other land use restrictions
- Intentions of donors, funders, etc.
Resource Layers

- Geology
- Soils
- Hydrology
- Existing infrastructure (buildings, roads, etc.)
- Other (maps and narrative)
- Geographical Information Systems (GIS)
Natural Resource Inventory

- Plant community description and health (maps and narrative)
- Plant and animal species list, inclusive of locations of rare/declining species habitat
- Presence/absence of resource problems/issues (deer overabundance, invasive plants, hazards, trash etc.)
Conservation Priorities

- Determine plant communities and other land cover (e.g. cliff face)
 - Compare to list of rare or unique habitats
- Assess likelihood of presence of rare, threatened and endangered species
 - Consult state Natural Heritage, Nature Serve or State Wildlife Action Plan databases
- Identification and protection of most critical resources
 - (i.e., conservation priorities)
Plan Considerations

- Protection of critical natural resources
- Permitted uses (e.g. hiking, bird watching, etc.)
- Non-permitted uses (e.g. logging, mining, development, etc.)
- Productive uses (e.g. farming, timber harvest, grazing, etc.)
Plan Development

- Who is responsible for writing?
- What resources are required
- Time frame for implementation
- Potential partnerships
Invasive Species

- Monitor for early detection
- Identify pest and understand life cycle
- Develop a control strategy
- Control practices
 - Herbicides
 - Burning
 - Biological control (e.g., musk thistle weevil)
 - Grazing
Fire Management

- Is system fire dependent?
- Develop prescribed burn plan
- Obtain required permits
- Consider safety issues
- Check on insurance coverage
- Time burn according to conservation targets
- Leave refuges (don’t burn all habitat at once)
Hydrologic Considerations

- Effectiveness of surface drainage
- Presence and effect of tile drains
- Construction of water control devices (e.g., levees, dams, gates, etc.)
- Watershed scale planning
Human Management

- Visitation Policy
 - Prohibited without permission
 - Allowed
 - Encouraged
- Trails
- Signage
- Fencing
- Patrol/enforcement
Implementation of Plan

- Establish strategies for each stewardship unit to meet goals
- List of activities to be performed in each stewardship unit
- Time frame for completion of activities
 - Short term (0 to 2 years)
 - Long term (more than 2 years)
Monitoring and Assessment

- Biological survey
 - Routine
 - Scientific
- Are objectives and goals being attained?
- Has work plan been successfully implemented?
Adaptive Management

- Adaptive management uses research strategies to evaluate success of alternative practices
- Design experiment to test:
 - Date of herbicide application
 - Timing of fire
 - Use of grazing animals
 - Et cetera
Summary

- Planning requires effort and resources
- Alternatives are
 - Inefficient use of time and money
 - Failure to achieve goals and objectives
 - Loss of biodiversity
 - Diminished public support
Assistance Available for Plan Development

- Land Trust Alliance (including LTANET)
- State land trust service centers
- The Nature Conservancy
- Other land trusts in your area
- Federal agencies (US Fish and Wildlife, US Geological Services (Biological Resources), USDA Natural Resources Conservation Service, etc.)
• State agencies: Departments of Natural Resources, Environment, etc.
• Local government: Planning agencies, parks, etc.
• Not for profits: Defenders of Wildlife, Audubon Society, Sierra Club, Wilderness Society, etc.
• Colleges and universities (landscape architecture, natural resource depts. etc)
• Consulting companies
Red Hills: Case Study

- Wade Tract managed by Tall Timbers Research Station and Land Conservancy
- Old growth of long-leaf pine with wiregrass understory
- Managed for support of Red-cockaded woodpecker

Source: Environmental Defense
Metolius Preserve: Case Study II

- Preserve is managed by Deschutes Basin Land Trust
- Predominantly Ponderosa Pine forest with White-headed Woodpecker
- Deschutes worked with Integrated Resource Management to develop a forest thinning strategy to produce more natural structure (clumpy and patchy)
Atlas Forest: Case Study III

- The Vermont Land Trust partnered with the Nature Conservancy to manage a large tract of hardwoods

- Two goals:
 - Maintain or improve biodiversity
 - Produce sustainable revenue from timber sales
Case Study IV
Kankakee Sands Restoration

- TNC project on over 7,000 acres in NW Indiana
- Removed drainage ditches to create wetlands and wet prairie
- Developed own seed nursery with 390 species
- Habitat for Henslow’s sparrow, grasshopper sparrow, lesser yellowlegs, etc.
American Plover (l) and Lesser Yellowlegs (R) courtesy of TNC website

Marsh Milkweed
Source: Wisconsin Stewardship Network