Proposed Recovery Plan

for

Southern Resident Killer Whales (*Orcinus orca*)

Prepared by
National Marine Fisheries Service
Northwest Regional Office
DISCLAIMER

Recovery plans delineate reasonable actions which the best available information indicates are necessary to recover and/or protect listed species. Plans are published by the National Marine Fisheries Service (NMFS), sometimes prepared with the assistance of recovery teams, State agencies, contractors, and others. Recovery plans do not necessarily represent the views, official positions, or approval of any individuals or agencies involved in the plan formulation, other than the NMFS. They represent the official position of NMFS only after they have been signed by the Assistant Administrator. Recovery Plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in any one fiscal year in excess of appropriations made by Congress for that fiscal year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new information, changes in species status, and the completion of recovery actions.

The literature citation should read as follows:

Additional copies of this recovery plan may be obtained from:

 National Marine Fisheries Service
 Northwest Region
 Protected Resources Division
 7600 Sand Point Way NE
 Seattle, WA 98115
 Or on the web at: http://www.nwr.noaa.gov
ACKNOWLEDGEMENTS

The principal authors of this document were Lynne M. Barre and J. Brent Norberg (National Marine Fisheries Service) and Gary J. Wiles (Washington Department of Fish and Wildlife), with contributions from J. Pete Schroeder (Marine Mammal Research Associates). The Background section is largely based on information appearing in the *Washington State Status Report for the Killer Whale* (Wiles 2004), with extensive material drawn from the recent status reviews prepared by the NMFS Biological Review Team (Krahn et al. 2002, 2004a).

This proposed plan is the result of wide public participation in conservation planning meetings and technical workshops. We would like to thank all of the presenters and participants in the series of workshops held in 2003 and 2004 to identify management actions for consideration in the conservation plan. In addition valuable comments were provided during two comment periods on a Draft and Proposed Conservation Plan. NMFS appreciates the support of the Washington Congressional Delegation and thanks Senator Maria Cantwell for her assistance in bringing the community together to conserve killer whales.

NMFS gratefully acknowledges the following people who provided updated information or reviewed sections of the plan: Ken Balcomb, Dave Ellifrit, Linda Jones, John Ford, Kari Koski, Craig Matkin, Sandie O’Neill, Marilyn Dahlheim, Rich Osborne, John Kerwin, Steve Jeffries, Pam Meacham, Joe Gaydos, John Dohrmann, David Bain, Christine Garrett, Brad Hanson, Jonathon Mintz, Kathy Heise, Mary Sternfeld, Stephanie Norman, Bruce Sanford, Andy Thomson, Patty Glick and Harriet Allen. Additional thanks go to the organizations and individuals who kindly offered comments on the preliminary draft plan. NMFS reviewers of the plan were: Joe Scordino, Donna Darm, Garth Griffin, Lisa VanAtta, Melanie Rowland, Tom Eagle, Laurie Allen, Roger Gentry, Brandon Southall, Donna Wieting, Susan Pultz, Naomi Lundberg, Doug DeMaster, Brad Hanson and Dawn Noren. The cover illustration and some figures appearing in this report were taken from Wiles (2004) and were prepared by Darrell Pruett of the Washington Department of Printing.
EXECUTIVE SUMMARY

Current Species Status: The distinct population segment (DPS) of Southern Resident killer whales (*Orcinus orca*) was listed as endangered under the Endangered Species Act (ESA) on November 18, 2005 (70 FR 69903). Prior to the ESA listing the National Marine Fisheries Service (NMFS) determined that the Southern Resident stock was below its optimum sustainable population (OSP) and designated it as depleted under the Marine Mammal Protection Act (MMPA) in May 2003 (68 FR 31980). Southern Resident killer whales occur primarily in Washington State and British Columbia in the summer and fall and in coastal waters in the winter. Southern Residents use echolocation during foraging and feed primarily on salmonids. The whales exhibit advanced vocal communication and live in highly stable social groupings, or pods, led by matriarchal females. The Southern Resident distinct population segment (DPS) experienced an almost 20% decline from 1996 to 2001 and was petitioned for listing under the ESA in 2001, and was listed as endangered in 2005. Since 2001 there has been a small increase in the population and there were 90 whales in the Southern Resident DPS for the 2006 census. The major threats identified in the listing were prey availability, pollution and contaminants, and effects from vessels and sound. In addition demographics, small population size, vulnerability to oil spills and other factors were considered.

The Recovery Plan: The ESA requires the Secretary of Commerce to develop and implement recovery plans for the conservation and survival of endangered and threatened species. A proposed conservation plan under the MMPA was developed and served as the foundation for the recovery plan. NMFS held a series of workshops in 2003-2004 to receive input from a variety of stakeholders on ideas for management actions to include in a conservation plan. A preliminary draft document was posted for public review in March 2005. Comments on the draft plan were incorporated into a Proposed Conservation Plan which was released for further public comment in October 2005. The proposed recovery plan is based on the Proposed Conservation Plan, with additional elements incorporated, as required under the ESA. The plan reviews and assesses the potential factors affecting the Southern Residents and lays out a recovery program to address each of the threats.

Recovery Strategy: There is considerable uncertainty regarding which threats may be responsible for the decline in the population or which is the most important to address for recovery. The plan lays out an adaptive management approach and a recovery strategy that addresses each of the potential threats based on the best available science. The recovery program outline links the management actions to an active research program to fill data gaps, and links to monitoring to assess effectiveness. Feedback from research and monitoring will provide the information necessary to refine ongoing actions and develop and prioritize new actions. The recovery program in the plan includes:

Prey Availability: Support salmon restoration efforts in the region including habitat, harvest and hatchery management considerations and continued use of existing NMFS authorities under the ESA and Magnuson-Stevens Fishery Conservation and Management Act to ensure an adequate prey base.
Pollution/Contamination: Clean up existing contaminated sites, minimize continuing inputs of contaminants harmful to killer whales, and monitor emerging contaminants.

Vessel Effects: Continue with evaluation and improvement of guidelines for vessel activity near Southern Resident killer whales and evaluate the need for regulations or protected areas.

Oil Spills: Prevent oil spills and improve response preparation to minimize effects on Southern Residents and their habitat in the event of a spill.

Acoustic Effects: Continue agency coordination and use of existing ESA and MMPA mechanisms to minimize potential impacts from anthropogenic sound.

Education and Outreach: Enhance public awareness, educate the public on actions they can participate in to conserve killer whales and improve reporting of Southern Resident killer whale sightings and strandings.

Respond to Sick, Stranded, Injured Killer Whales: Improve responses to live and dead killer whales to implement rescues, conduct health assessments, and determine causes of death to learn more about threats and guide overall conservation efforts.

Transboundary and Interagency Coordination: Coordinate monitoring, research, enforcement, and complementary recovery planning with Canadian agencies, and federal and state partners.

Research and Monitoring: Conduct research to facilitate and enhance conservation efforts. Continue the annual census to monitor trends in the population, identify individual animals, and track demographic parameters.

Recovery Goals, Objective, and Criteria: The goal of the plan is to restore the endangered Southern Residents to the point where they no longer require the protections of the ESA. When the Southern Resident killer whales have sustained an average growth of 2.3 % per year for 28 years, population parameters are consistent with a healthy growing population, and threats have been addressed, they will no longer be in danger of extinction or likely to become endangered in the foreseeable future. Interim downlisting criteria of average growth of 2.3 % per year for 14 years and progress toward addressing threats represents sustained growth to indicate that the population could be downlisted to threatened, (i.e., likely to become endangered in the foreseeable future.) Monitoring population trends over time will be necessary to confirm that the population has recovered.

Estimated Cost of Recovery: There are currently many efforts underway in Puget Sound to address recovery of depleted salmon stocks, improve the condition of Puget Sound, and assist in prevention and response to oil spills. In addition to these ongoing efforts, the Recovery Program identifies the cost and time to carry out actions to address the threats to Southern Resident killer whales although we cannot estimate when the most important threats will be identified or when threat criteria will be met. There are a variety of scenarios and time frames under which the
Southern Resident DPS could meet the biological criteria. Funding for research and conservation efforts has been available from FY03-FY06 and to continue recovery and research efforts over the next five years, the total estimated cost is $15,040,000. If the first five years of actions occurred; the annual cost would likely be reduced for subsequent years (~$1,500,000/year). Assuming a time frame of 28 years for delisting, the total estimated cost of recovery would be $49,540,000.

Recovery of the Southern Resident killer whale DPS is a long-term effort that requires cooperation and coordination of the Washington and British Columbia communities. The plan was developed with input from a variety of stakeholders, including federal and state agencies, tribes, non-profit groups, industries, the academic community, and concerned citizens. Development of this plan was closely coordinated with the State of Washington and the Canadian Department of Fisheries and Oceans.
I. INTRODUCTION

The overall goal of a recovery plan is to meet the recovery criteria and address threats to allow removal from the List of Endangered and Threatened Wildlife (List). In light of the small population size, recent declines, life history and potential threats, it is challenging to identify the most immediate needs for conservation and recovery of Southern Resident killer whales. For many listed species of marine mammals, there is a primary cause of direct mortality that can be attributed to a particular source (e.g., ship strikes, fishery interactions, or harvest), but this is not the case for Southern Residents. It is unknown which of the threats has caused the decline or may have the most significant impact on recovery of the population. It may be a combination of threats or the cumulative effects that are the problem. In addition, there are inherent risks for small populations. This plan addresses each of the potential threats based on current knowledge.

To address the data gaps and uncertainties, there is an active research program underway. While researchers have been studying the Southern Residents for over 30 years, there has been increased interest and funding support in the last several years because of the status of the population. The research program administered by NOAA’s Northwest Fisheries Science Center has targeted specific questions that will assist in management and conservation. The research program is a long-term effort by many institutions and individuals and it will take time to discover answers, particularly in light of the long-lived nature of this species. The management actions in this plan are based on the best available science and the current understanding of the threats. Because it is not possible at this time to identify exactly which actions will be required for recovery of the species, the plan represents an initial approach to begin addressing each of the threats.

Research and monitoring are key components of the plan and they will make an adaptive management approach possible. Conservation of killer whales is a long-term cooperative effort that will evolve as more is learned from research and monitoring. Continued monitoring of the status of the population will assist in evaluating the effectiveness of management actions. Research will help refine actions that have been implemented and identify new actions to fill data gaps about the threats. An adaptive management approach will also provide information to adjust priorities as conservation progresses and to modify and update the plan.

This plan provides background information on Southern Resident killer whale life history and status, and existing protective measures. Recovery goals and criteria are provided along with conservation measures, research and monitoring tasks in a narrative outline. Priorities and costs for the measures are provided in an implementation table.

Public Input and Comments

When the Southern Resident killer whales were designated as a depleted stock under the MMPA, NMFS began developing a conservation plan, as required under the MMPA. We held a series of public workshops on each of the major threats – prey availability, contaminants and vessel interactions, to gather input on potential management actions to include in the plan (http://www.nwr.noaa.gov/Marine-Mammals/Whales-Dolphins-Porpoise/Killer-Whales/Conservation-Planning/Index.cfm). The format of the workshops included presentations.
by researchers and agency representatives to identify the current condition of the Southern Residents. The presentations were followed by breakout groups to brainstorm and discuss management actions. The results of the workshops were posted on our web page and used to create a draft conservation plan. The plan was posted for public comment and we received a variety of additional suggestions for management actions. This first round of comments were reviewed and incorporated as appropriate into the proposed conservation plan. In October 2005 we published a Notice of Availability of a Proposed Conservation Plan for further public comment. In addition to notifying the large list of interested parties that had signed up for our e-mail list, we contacted several agencies that were identified as responsible parties in the draft plan to gather information on their programs and develop cost estimates based on multiple agency efforts. During the public comment period posted in the Federal Register, we received over 40 comments from government agencies, conservation groups, industry representatives, researchers, and interested citizens.

Not surprisingly, commenters with different interests provided strikingly different perspectives that were often in opposition to each other. There were comments that we incorporated to clarify concepts, strengthen language and ensure that all of the background information was accurate and up-to-date. Other comments suggested that emphasis should be placed on particular threats. Each of the major threats was suggested as the most important problem for Southern Residents by at least one commenter, and several of the threats were dismissed as unimportant. Our approach to recovery addresses the uncertainty regarding which threat may have caused the decline or may limit recovery and includes actions for each of the threats. The adaptive approach incorporating research to refine management actions will provide feedback to establish which threats should take priority. While many comments were constructive, some were too broad to address, unrealistic or not consistent with the requirements or goals of the ESA and, therefore, were not addressed.

When the Southern Residents were listed under the ESA, several commenters suggested that we convene a recovery team to develop an ESA recovery plan. Fortunately, we had already made significant progress on a conservation plan that could be amended to meet the needs of a recovery plan as well. Under the ESA, “The Secretary, in developing and implementing recovery plans, may procure the services of appropriate public and private agencies institutions and other qualified persons” which often form a recovery team. While this is often a valuable approach to include various stakeholders in the recovery planning process, we determined that the open public process used to develop the conservation plan already included interested stakeholder groups and actually allowed for even broader participation than a recovery team would have allowed. The various parties that are key players with important information from the research community, industry, conservation groups and government agencies have already been involved and actively participating in the process.

Several examples of comments that we incorporated into this proposed recovery plan include additions of responsible parties for some actions, inclusion of beneficial programs currently underway that were brought to our attention, clarification of the descriptions of levels of social structure, and identification of new research results and scientific papers to update the plan. Government agencies provided valuable information on current programs already in place to address threats such as contamination in Puget Sound, including identifying the newly formed
Puget Sound Partnership. Other community efforts currently underway and highlighted in the comments are the Shared Strategy for Puget Sound and the draft recovery plan for Puget Sound Chinook, both of which became available after the proposed conservation plan was released. These initiatives have all been added into the plan. In addition, NOAA’s Northwest Fisheries Science Center hosted a “Research Workshop on Southern Resident Killer Whales” in April of 2006 and many of the presentations and abstracts prepared for that conference provided valuable new information that has been incorporated into the plan.

The broad participation in reviewing the plan contributed to conflicting comments about our approach to recovery. Industry groups reacted to inclusion of management actions that could affect their activities and have economic impacts. They suggest that management actions with economic impacts should not be implemented until sufficient scientific evidence is obtained to prove effects to the whales and assure that the actions are necessary for their recovery. Conservation groups on the other hand, suggested that a precautionary approach is necessary and that we cannot wait to obtain additional research results before implementing actions. In the proposed recovery plan, we have attempted to address the uncertainty that exists, as well as address varying views.

For example, we received opposing comments regarding how we should address the threat of oil spills. Industry groups provided detailed information on the various state, federal, and international regulations and programs currently in place and argued that these were sufficient to address the uncertain threat of an oil spill. They suggested that emphasis be placed on addressing issues such as prey that they consider to be a more serious threat. Conservation groups, however, specifically suggested that additional actions be taken to prevent and respond to oils spills because spills are perhaps the biggest single threat to killer whales. In this proposed recovery plan we have attempted to reconcile these disparate views. We have included references to additional safety measures that were provided by industry groups, yet we have also maintained language regarding potential improvements that can be made to specifically address risks of oil spills to killer whales.

There were similar comments regarding salmon recovery efforts and how they were addressed in the plan. While some commenters felt that salmon recovery should be separate from the goals of the killer whale recovery plan and that the current salmon recovery efforts were sufficient, other commenters felt that the killer whale conservation plan should include salmon recovery efforts and should set more expedited goals for salmon recovery than what is currently proposed in salmon plans. Some commenters raised the issue of hatcheries, supporting them as a source for sufficiently large numbers of fish for the whales, while others were cautious about the effects hatchery fish have on wild populations. Another criticism of the plan was that prey other than salmon were not adequately addressed.

There were also opposing comments regarding vessels. Several commenters were critical of the whale watching industry and its impact on Southern Residents, while other commenters disputed that vessels have any substantial effects on the whales and were critical of the emphasis on whale watching as a primary threat. Some commented on the beneficial aspects of whale watching to educate people and inspire protection of killer whales and the environment. Both potential effects and benefits are currently included in the recovery plan. In addition, one contingent
suggested that the Be Whale Wise guidelines are insufficient to protect Southern Residents and that NMFS should implement and enforce formal regulations. Other commenters supported the efforts of the whale watching industry to educate the public and to follow the voluntary guidelines, which they felt were sufficient to address any perceived concerns. The proposed recovery plan includes management actions linked to research to evaluate the impacts of vessels of all types and determine if regulations or protected areas are warranted. NMFS will engage the community and industry groups in the evaluation and go through a public process that would allow for input from all of the stakeholders if any restrictions or regulations are considered.
II. BACKGROUND

A. TAXONOMY

Killer whales are members of the family Delphinidae, which includes 17-19 genera of marine dolphins (Rice 1998, LeDuc et al. 1999). Systematic classifications based on morphology have variably placed the genus *Orcinus* in the subfamilies Globicephalinae or Orcinae with other genera such as *Feresa, Globicepha, Orcaella, Peponocephala, and Pseudorca* (Slijper 1936, Fraser and Purves 1960, Kasuya 1973, Mead 1975, Perrin 1989, Fordyce and Barnes 1994). However, molecular work suggests that *Orcinus* is most closely related to the Irawaddy dolphin (*Orcaella brevirostris*), with both forming the subfamily Orcinae (LeDuc et al. 1999).

Orcinus has traditionally been considered monotypic, despite some variation in color patterns, morphology, and ecology across its distribution. No subspecies are formally recognized. In the early 1980s, Soviet scientists proposed two new species (*O. nanus* and *O. glacialis*) in Antarctica, based on their smaller sizes and other traits (Mikhalev et al. 1981, Berzin and Vladimirov 1983, Pitman and Ensor 2003). Similarly, Baird (1994, 2002) argued that resident and transient forms in the northeastern Pacific should be treated as separate species due to differences in behavior, ecology, and vocalizations. However, these proposals did not receive wide acceptance (Hoelzel et al. 1998, Rice 1998, Barrett-Lennard 2000). Additional investigation documented genetic distinctions among populations in the northeastern Pacific, but these were considered insufficient to warrant designation of discrete taxa (Hoelzel and Dover 1991, Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001). Hoelzel et al. (2002) reported low diversity and inconsistent geographic patterns in mitochondrial DNA (mtDNA) among worldwide populations, which supported the lack of taxonomic differentiation within the species. Despite these findings, a number of authorities believed that the classification of killer whales as a single species without subspecies was inaccurate (Krahn et al. 2002, Waples and Clapham 2004), as suggested by the recent recognition of three distinct forms in Antarctica (Pitman and Ensor 2003). Preliminary evidence suggests that multiple ecotypes may also occur in Norway and New Zealand (Waples and Clapham 2004). Furthermore, the low genetic diversity of killer whales may be more reflective of their matrilineal social structure (Whitehead 1998) than an absence of taxonomic separation.

Ongoing genetic studies are providing further understanding of the relationships among killer whale populations (Waples and Clapham 2004). However, many of the results are open to multiple interpretations, thus precluding firm taxonomic conclusions. Analyses of mitochondrial DNA diversity reveal greater genetic variation in the species than previously recognized, based on the discovery of a much larger number of haplotypes. Two major groups of haplotypes exist (LeDuc and Taylor 2004), as illustrated in a preliminary phylogenetic tree prepared by R. LeDuc (Krahn et al. 2004a). The largest clade appears to be distributed worldwide and includes resident and offshore whales from the northeastern Pacific, other fish-eating populations, and some mammal-eating populations from the eastern tropical Pacific, Argentina, and the Gulf of Mexico. The second clade is known thus far only from the North Pacific and Antarctica, and includes the mammal-feeding transient whales from the west coast of North America. Hoelzel (2004), using mitochondrial DNA sequence data, similarly found that transient haplotypes were divergent from those of other populations in the North Pacific and Iceland. Total genetic variation in Antarctic
killer whales is comparable to that in combined populations from the rest of the world (LeDuc and Pitman 2004). Based on mitochondrial DNA, Hoelzel et al. (2002) postulated that killer whales as a species experienced a population bottleneck perhaps 145,000 to 210,000 years ago.

This information, together with tentative morphological evidence (C. W. Fung and L. G. Barrett-Lennard, unpubl. data), has caused most cetacean taxonomists to now believe that multiple species or subspecies of killer whales exist worldwide (Krahn et al. 2004a, Reeves et al. 2004, Waples and Clapham 2004). Most participants at a taxonomy workshop held in April-May 2004 concluded that sufficient information currently exists to formally recognize resident and transient whales in the northeastern Pacific and two or three forms from Antarctica as subspecies, with further study needed to determine whether classification as full species is appropriate (Reeves et al. 2004). If subspecies designations proceed, a lengthy review of museum material and published species descriptions is necessary before assignment of nomenclature can occur (Krahn et al. 2004a, Perrin 2004). Based on this evidence, Krahn et al. (2004a) concluded that all North Pacific resident killer whales should be treated as a single unnamed subspecies distinct from offshore and transient whales. The Biological Review Team also concluded that the Southern Residents were discrete from other North Pacific residents and significant with respect to the North Pacific resident taxon, and therefore should be considered a distinct population segment (Krahn et al. 2004a.)

Common Names

The name “killer whale” originates from early whalers and is appropriately based on the species’ predatory habits, as well as its large size, which distinguishes it from other dolphins. Other common names currently or formerly used in North America include “orca,” “blackfish,” “killer,” “grampus,” and “swordfish.” The name “orca” has become increasingly popular in recent decades as a less sinister alternative to “killer whale” (Spalding 1998). A variety of Native American names also exist, including klasqo’kapix (Makah, Olympic Peninsula), ka-kowwud (Quileute, Olympic Peninsula), max’inux (Kwakiutl, northern Vancouver Island), qaqawun (Nootka, western Vancouver Island), and ska-ana (Haida, Queen Charlotte Islands) (Hoyt 1990, Matkin et al. 1999a, Ford et al. 2000).

B. DESCRIPTION

Killer whales are the world’s largest dolphin. The sexes show considerable size dimorphism, with males attaining maximum lengths and weights of 9.0 m and 5,568 kg, respectively, compared to 7.7 m and 3,810 kg for females (Dahlheim and Heyning 1999). Adult males develop larger pectoral flippers, dorsal fins, tail flukes, and girths than females (Clark and Odell 1999). The dorsal fin reaches heights of 1.8 m and is pointed in males, but grows to only 0.7 m and is more curved in females (Figure 1). Killer whales have large paddle-shaped pectoral fins and broad rounded heads with only the hint of a facial beak. The flukes have pointed tips and form a notch at their midpoint on the trailing edge. Ten to 14 teeth occur on each side of both jaws and measure up to 13 cm in length (Eschricht 1866, Scammon 1874, Nishiwaki 1972). Skull morphology and other anatomical features are described by Tomilin (1957) and Dahlheim and Heyning (1999).
Killer whales are easily identifiable by their distinctive black-and-white color pattern, which is among the most striking of all cetaceans. Animals are black dorsally and have a white ventral region extending from the chin and lower face to the belly and anal region (Figure 1). The underside of the tail fluke is white or pale gray, and may be thinly edged in black. Several additional white or gray markings occur on the flanks and back. These include a small white oval patch behind and above the eye, a larger area of white connected to the main belly marking and sweeping upward onto the lower rear flank, and a gray or white “saddle” patch usually present behind the dorsal fin. These color patterns exhibit regional and age variation (Carl 1946, Evans et al. 1982, Baird and Stacey 1988, Ford et al. 2000, Pitman and Ensor 2003). Infants feature yellowish, rather than white, markings. Each whale has a uniquely shaped and scarred dorsal fin and saddle patch, which permits animals to be recognized on an individual basis, as depicted in photo-identification catalogs, such as those compiled for the northeastern Pacific region (e.g., Black et al. 1997, Dahlheim 1997, Dahlheim et al. 1997, van Ginneken et al. 1998,

Figure 1. Lateral and ventral views of an adult male killer whale. Small insets show the dorsal fin and genital pigmentation of a female. Adapted from Dahlheim and Heyning (1999) and Ford et al. (2000). Reprinted from Wiles (2004).
In addition to the characters mentioned above, male and female killer whales are distinguishable by pigmentation differences in the genital area (Figure 1; Ford et al. 2000). Females have a roughly circular or oval white patch surrounding the genital area. Within this patch, the two mammary slits are marked with gray or black and are located on either side of the genital slit, which also usually has a dark marking. Males have a more elongated white patch surrounding the genital area, a larger darker spot at the genital slit, and lack the darkly shaded mammary slits.

When viewed at long distances, false killer whales (*Pseudorca crassidens*) and Risso’s dolphins (*Grampus griseus*) can be mistaken for female and immature killer whales (Leatherwood et al. 1988). Blows of killer whales are low and bushy-shaped, reaching a height of about 1-3 m (Scammon 1874, Scheffer and Slipp 1948, Eder 2001). Scheffer and Slipp (1948) described the sound of blowing as “a quick breathy puff, louder and sharper and lacking the double gasp of the harbor porpoise” (*Phocoena phocoena*).

C. DISTRIBUTION

Killer whales have a cosmopolitan distribution considered the largest of any cetacean (Figure 2). The species occurs in all oceans, but is generally most common in coastal waters and at higher latitudes, with fewer sightings from tropical regions (Dahlheim and Heyning 1999; Forney and Wade, in press). In the North Pacific, killer whales occur in waters off Alaska, including the Aleutian Islands and Bering Sea (Murie 1959, Braham and Dahlheim 1982, Dahlheim 1994, Matkin and Saulitis 1994, Miyashita et al. 1995, Dahlheim 1997, Waite et al. 2002), and range southward along the North American coast and continental slope (Norris and Prescott 1961, Fiscus and Niggol 1965, Gilmore 1976, Dahlheim et al. 1982, Black et al. 1997, Guerrero-Ruiz et al. 1998). Populations are also present along the northeastern coast of Asia from eastern Russia to southern China (Zenkovich 1938, Tomilin 1957, Nishiwaki and Handa 1958, Kasuya 1971, Wang 1985, Miyashita et al. 1995). Northward occurrence in this region extends into the Chukchi and Beaufort Seas (Ivashin and Votrogov 1981, Lowry et al. 1987, Matkin and Saulitis 1994, Melnikov and Zagrebin 2005). Sightings are generally infrequent to rare across the tropical Pacific, extending from Central and South America (Dahlheim et al. 1982, Wade and Gerrodette 1993, García-Godos 2004) westward to much of the Indo-Pacific region (Tomich 1986, Eldredge 1991, Miyashita et al. 1995, Reeves et al. 1999, Visser and Bonocorso 2003; Baird et al. 2006; Forney and Wade, in press). Killer whales occur broadly in the world’s other oceans, with the exception of the Arctic Ocean (Figure 2; Miyashita et al. 1995, Dahlheim and Heyning 1999; Forney and Wade, in press).
D. CLASSIFICATION OF KILLER WHALES IN THE NORTHEASTERN PACIFIC

Three distinct forms of killer whales, termed as residents, transients, and offshores, are recognized in the northeastern Pacific Ocean. Although there is considerable overlap in their ranges, these populations display significant genetic differences due to a lack of interchange of member animals (Stevens et al. 1989, Hoelzel and Dover 1991, Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001, Hoelzel 2004, Krahn et al. 2004a). Important differences in ecology, behavior, morphology, and acoustics also exist (Baird 2000, Ford et al. 2000). The names “resident” and “transient” were coined during early studies of killer whale communities in the northeastern Pacific (Bigg 1982), but continued research has shown that neither term is particularly descriptive of actual movement patterns (Dahlheim and Heyning 1999, Baird and Whitehead 2000, Baird 2001). Both names, plus “offshore,” are currently applied only to killer whales occurring in this region, but may also be appropriate for some populations off eastern Asia (Krahn et al. 2002). Similar differences among overlapping populations of killer whales have been found in Antarctica (Berzin and Vladimirov 1983, Pitman...
and Ensor 2003) and may eventually be recognized in the populations of many localities (Hoelzel and Dover 1991, Ford et al. 1998).

Resident Killer Whales

Resident killer whales in the Northeast Pacific are distributed from Alaska to California, with four distinct communities recognized: southern, northern, southern Alaska, and western Alaska (Krahn et al. 2002, 2004a). Resident animals differ from transient and offshore killer whales by having a dorsal fin that is more curved and rounded at the tip (Ford et al. 2000). Residents exhibit five patterns of saddle patch pigmentation, two of which are shared with transients (Baird and Stacey 1988). Residents also differ in vocalization patterns and skull traits, feed primarily on fish, and occur in large stable pods typically comprised of 10 to about 60 individuals (Ford 1989, Felleman et al. 1991, Ford et al. 1998, 2000, Saulitis et al. 2000; C. W. Fung and L. G. Barrett-Lennard, unpubl. data). An additional resident community, known as the western North Pacific residents, occurs off eastern Russia and perhaps Japan (Hoelzel 2004, Krahn et al. 2004a).

Southern Residents. This population consists of three pods, designated J, K, and L pods, that reside for part of the year in the inland waterways of Washington State and British Columbia (Strait of Georgia, Strait of Juan de Fuca, and Puget Sound), principally during the late spring, summer, and fall (Bigg 1982, Ford et al. 2000, Krahn et al. 2002). Pods have visited coastal sites off Washington and Vancouver Island (Ford et al. 2000), and are known to travel as far south as central California and as far north as the Queen Charlotte Islands (Figure 3). Winter and early spring movements and distribution are largely unknown for the population. Although there is considerable overlap in the geographic ranges of Southern and Northern Residents, pods from the two populations have not been observed to intermix (Ford et al. 2000). Genetic analyses using nuclear (microsatellite) and mitochondrial DNA indicate that the two populations are most likely reproductively isolated from each other (Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001).

Northern Residents. This community contains 16 pods (A1, A4, A5, B1, C1, D1, H1, I1, I2, I18, G1, G12, I11, I31, R1, and W1) that reside primarily from central Vancouver Island (including the northern Strait of Georgia) to Frederick Sound in southeastern Alaska (Figure 3; Dahlheim et al. 1997, Ford et al. 2000), although animals occasionally venture as far south as the Strait of Juan de Fuca, San Juan Islands, and the west coast of Washington (Barrett-Lennard and Ellis 2001, Calambokidis et al. 2004, Wiles 2004; J. K. B. Ford, unpubl. data, NWFSC unpubl. data). From June to October, many Northern Resident pods congregate in the vicinity of Johnstone Strait and Queen Charlotte Strait off northeastern Vancouver Island, but movements and distribution during other times of the year are less well known (Ford et al. 2000). In southeastern Alaska, Northern Residents have been seen within 500 m of pods from the Southern Alaska Resident community (Krahn et al. 2004a) and limited gene flow may occur between these two populations (Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001).

Southern Alaska Residents. Southern Alaska Resident killer whales inhabit the waters of southeastern Alaska and the Gulf of Alaska, including Prince William Sound, Kenai Fjords, and
Kodiak Island (see Figure 1 in Krahn et al. 2004a) (Dahlheim et al. 1997, Matkin and Saulitis 1997, Matkin et al. 1997, 1999a). At least 25 pods have been identified (Matkin et al. 2003, Angliss and Outlaw 2005). However, some groups remain poorly known and a full inventory of the community has not yet been accomplished (C. O. Matkin, pers. comm.). Genetic analyses indicate that this population is most closely related to the Northern Residents and that occasional intermatings may occur between the two (Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001). Southern Alaska Residents are also closely related to the Western Alaska Resident community (Hoelzel 2004) and have been observed once off Kodiak Island in association with whales from this population (M. E. Dahlheim, unpubl. data).

Western Alaska Residents. The distribution and abundance of this community is less understood, but its range includes coastal and offshore waters west of Kodiak Island to the Aleutian Islands and the Bering Sea (see Figure 1 in Krahn et al. 2004a) (Dahlheim 1997, Krahn et al. 2004a, Zerbinin et al. 2006). It is also thought to be the largest resident community in the region (Krahn...
et al. 2004a). An unknown number of pods is present and pod names have not yet been assigned. Recent genetic studies by Hoelzel (2004) suggest that the population is more closely related to the Southern Alaska Residents than to the western North Pacific residents.

Transient Killer Whales

Transients do not associate with resident and offshore whales despite having a geographic range that is largely sympatric with both forms (Figure 4). Compared to residents, transients occur in smaller groups of usually less than 10 individuals (Ford and Ellis 1999, Baird 2000, Baird and Whitehead 2000, Zerbinin et al. 2006), display a more fluid social organization, and have diets consisting largely of other marine mammals (Baird and Dill 1996, Ford et al. 1998, Saulitis et al. 2000). They also move greater distances and tend to have larger home ranges than residents (Goley and Straley 1994, Dahlheim and Heyning 1999, Baird 2000). Morphologically, the dorsal fins of transients are straighter at the tip than in residents and offshores (Ford and Ellis 1999, Ford et al. 2000). Two patterns of saddle pigmentation are recognized (Baird and Stacey 1988). Genetic investigations using both nuclear DNA and mtDNA have found significant genetic differences between transients and other killer whale forms, confirming the lack of interbreeding (Stevens 1989, Hoelzel and Dover 1991, Hoelzel et al. 1998, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001, Hoelzel 2004, Leduc and Taylor 2004). These studies also indicate that three genetically distinct assemblages of transient killer whales exist in the northeastern Pacific. These are identified as 1) west coast transients, which occur from southern California to southeastern Alaska (Figure 4); 2) Gulf of Alaska transients, which inhabit the Gulf of Alaska, Aleutians, and Bering Sea (although significant genetic differences may exist within the population [Angliss and Outlaw 2005]); and 3) the AT1 pod, which occurs in Prince William Sound and the Kenai Fjords in the northern Gulf of Alaska and has been designated as a depleted stock with no more than seven whales remaining (Ford and Ellis 1999, Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001, NMFS 2003a; C. O. Matkin, unpubl. data). Genetic and acoustic evidence suggests there is little or no interchange of members among these populations (Barrett-Lennard and Ellis 2001, Saulitis et al. 2005).

Offshore Killer Whales

Due to a scarcity of sightings, much less information is available for the offshore killer whale population, which was first identified in the late 1980s (Ford et al. 1992, 1994, Walters et al. 1992). Offshores have the largest geographic range of any killer whale community in the northeastern Pacific. Records are distributed from southern California to Alaska (Figure 4), including many from western Vancouver Island and the Queen Charlotte Islands (Ford and Ellis 1999, Krahn et al. 2002). Recent data from Alaska has extended the population’s range to the western Gulf of Alaska and eastern Aleutians (M. E. Dahlheim, pers. comm.). Offshore killer whales usually occur 15 km or more offshore, but also visit coastal waters and occasionally enter protected inshore waters. Sightings have been made up to 500 km off the Washington coast (Krahn et al. 2002). Animals typically congregate in groups of 20-75 animals and are presumed to feed primarily on fish. Intermixing with residents and transients has not been observed. Genetic analyses indicate that offshore killer whales are reproductively isolated from other forms, but are most closely related to the Southern Residents (Hoelzel et al. 1998, Barrett-Lennard and Ellis 2001). Offshores are thought to be slightly smaller in body size than residents.
and transients, and have dorsal fins and saddle patches resembling those of residents (Walters et al. 1992, Ford et al. 2000).

Figure 4. Geographic ranges (light shading) of the west coast transient (left) and offshore (right) killer whale populations in the northeastern Pacific. The western pelagic boundary of the ranges is ill-defined. The northern range of the offshore population extends westward to the eastern Aleutian Islands. Repinted from Wiles (2004).
Naming Systems of Killer Whales in the Northeastern Pacific

As previously noted, killer whales are individually recognizable by the unique markings and shapes of their dorsal fin, saddle patch, and eye patches. In the northeastern Pacific, researchers use a variety of alphanumeric naming systems to maintain sighting records and other data for individual whales in each community. For Southern Resident whales, animals are assigned their own alphanumeric names, based on their pod and the sequence in which they were identified (Ford et al. 2000). Thus, the Southern Resident known as “L7” was the seventh member to be documented in L pod. Similar naming systems have been applied to each of the region’s other killer whale communities (e.g., Dahlheim 1997, Dahlheim et al. 1997, Matkin et al. 1999a), but these may or may not be standardized among researchers. Thus, individual whales sighted in multiple areas may have more than one name (e.g., Ford and Ellis 1999).

E. NATURAL HISTORY

Social Organization

Killer whales are highly social animals that occur primarily in groups or pods of up to 40-50 animals (Dahlheim and Heyning 1999, Baird 2000). Mean pod size varies among populations, but often ranges from 2 to 15 animals (Kasuya 1971, Condy et al. 1978, Mikhalev et al. 1981, Braham and Dahlheim 1982, Dahlheim et al. 1982, Baird and Dill 1996). Larger aggregations of up to several hundred individuals occasionally form, but are usually considered temporary groupings of smaller social units that probably congregate near seasonal concentrations of prey, for social interaction, or breeding (Dahlheim and Heyning 1999, Baird 2000, Ford et al. 2000). Single whales, usually adult males, also occur in many populations (Norris and Prescott 1961, Hoelzel 1993, Baird 1994). Differences in spatial distribution, abundance, and behavior of food resources probably account for much of the variation in group size among killer whale populations. For example, sympatric populations of resident and transient whales in the northeastern Pacific vary substantially in average pod size. The larger groups of residents may be better suited for detecting schools of fish, enabling individual members to increase food consumption (Ford et al. 2000). In contrast, transients forage in small groups on wary and patchily distributed marine mammals and are presumably able to maximize their per capita energy intake through reduced competition over food (Baird and Dill 1996, Ford and Ellis 1999, Baird and Whitehead 2000).

The age and sex structure of killer whale social groups has been reported for populations at several locations. The southern and Northern Resident communities combined were comprised of 19% adult males, 31% adult females, and 50% immature whales of either sex in 1987 (Olesiuk et al. 1990a). Nearly identical age and sex cohorts were present among the Southern Alaska Residents in 2001, with 19% of the animals being adult males, 24% reproductive females, 7% post-reproductive females, and 51% juveniles (Matkin et al. 2003). For southern oceans, Miyazaki (1989) found that 16% of populations were adult males, 8% were adult females with calves, and 76% were immatures and adult females without calves. At Marion Island in the southern Indian Ocean, 29% of the population were adult males, 21% were adult females, 8% were calves, 25% were subadults, and 17% were unidentified (Condy et al. 1978).
Some of the most detailed studies of social structure in killer whales have been made in British Columbia, Washington, and Alaska during the past few decades, with much information available on group size, structure, and stability, and vocal traits (Ford 1989, 1991, Bigg et al. 1990, Baird and Dill 1996, Matkin et al. 1999b, Baird 2000, Baird and Whitehead 2000, Ford et al. 2000, Miller and Bain 2000, Yurk et al. 2002). Social organization in this region is based on maternal kinship and may be characteristic of killer whale populations throughout the world (Ford 2002).

Residents. Four levels of social structure have been identified among resident killer whales. The basic and most important social unit is the matriline, which is a highly stable hierarchical group of individuals linked by maternal descent (Baird 2000, Ford et al. 2000, Ford 2002, Ford and Ellis 2002). A matriline is usually composed of a female, her sons and daughters, and offspring of her daughters, and contains one to 17 (mean = 5.5) individuals spanning one to five (mean = 3) generations. Members maintain extremely strong bonds and individuals seldom separate from the group for more than a few hours. Permanent dispersal of individuals from resident matrilines has never been recorded (Bigg et al. 1990, Baird 2000, Ford et al. 2000, Barrett-Lennard and Ellis 2001) and the two recent separations of calves (A73 and L98) from their natal pods are considered anomalous. Matriarchal females likely hold important social knowledge that guides the behavior of individual matrilines (Boran and Heimlich 1999, McComb et al. 2001).

Groups of related matrilines are known as pods. Matrilines within pods share a common maternal ancestor from the recent past, making them more closely related to one another than to those of other pods (Baird 2000, Ford et al. 2000). Pods are less cohesive than matrilines and member matrilines may travel apart for periods of weeks or months. Nonetheless, matrilines associate more often with others from their pod than with matrilines from other pods. Most pods are comprised of one to four matrilines, but one Southern Resident pod (L pod) holds 12 matrilines (Table 1). Resident pods have contained two to 59 whales (Bigg et al. 1987, Ford et al. 2000, Ford 2002, Matkin et al. 2003; Center for Whale Research, unpubl. data). Gradual changes in pod structure and cohesion occur through time with the deaths and births of members, as seen after the death of one matriarchal female, which appeared to prompt the fragmentation of her matriline (Ford et al. 2000). Such changes in association patterns caused some observers to believe that L pod was comprised of three smaller pods during the 1980s (Hoelzel 1993). Within pods, some researchers recognize the existence of an intermediate type of association known as the subpod, which is defined as a grouping of matrilines that spends more than 95% of their time together (Baird 2000). While pods have been traditionally used as a social structure grouping, recent studies indicate that killer whale pods may be more ephemeral than previously believed and due to matrilineal splitting over time (Ford et al. 2003).

Clans are the next level of social structure and are composed of pods with similar vocal dialects and a common but older maternal heritage (Ford 1991, Ford et al. 2000, Yurk et al. 2002). Those pods with similar dialects are presumably more closely related to one another than those with greater differences in their dialects (Ford 1991). However, vocalizations known as pulsed calls are not shared between different clans, indicating a lack of recent common ancestry between clans. Clans overlap in their geographic ranges and pods from different clans frequently intermingle.

Pods (and clans) that regularly associate with one another are known as communities, which represent the highest level of social organization in resident killer whale societies (Ford et al. 2000,
Ford 2002). Four communities (southern, northern, southern Alaska, and western Alaska) of resident whales exist in the northeastern Pacific. Communities are based solely on association patterns rather than maternal relatedness or acoustic similarity. Ranges of neighboring communities partially overlap and member pods may or may not associate on an occasional basis with those from other communities (Baird 2000). The Southern Resident community is comprised of three pods belonging to one clan (J), whereas the Northern Resident community has 16 pods in three clans (A, G, and R) (Table 1, Ford et al. 2000).

Table 1. Social hierarchy and pod sizes of southern and Northern Resident killer whales in Washington and British Columbia (Ford et al. 2000; Center for Whale Research, unpubl. data).

<table>
<thead>
<tr>
<th>Community</th>
<th>Clan</th>
<th>Poda</th>
<th>Matrilines</th>
<th>No. of members per podb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Residents</td>
<td>J</td>
<td>J</td>
<td>J2, J8, J9, J16</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>K</td>
<td>K3, K4, K7, K18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>L</td>
<td>L2, L4, L9, L12, L21, L25, L26, L28, L32, L35, L37, L45</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Northern Residents</td>
<td>A</td>
<td>A1</td>
<td>A12, A30, A36</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A4</td>
<td>A11, A24</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A5</td>
<td>A8, A9, A23, A25</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B1</td>
<td>B7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C1</td>
<td>C6, C10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>D1</td>
<td>D7, D11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>H1</td>
<td>H6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>I1</td>
<td>I1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>I2</td>
<td>I22</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>I18</td>
<td>I17, I18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G1</td>
<td>G3, G4, G17, G18, G29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G12</td>
<td>G2, G12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>I11</td>
<td>I11, I15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>I31</td>
<td>I31</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R1</td>
<td>R2, R5, R9, R17</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>W1</td>
<td>W3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>216</td>
</tr>
</tbody>
</table>

a Southern Resident pods are also known as J1, K1, and L1 pods (Ford et al. 2000).

b Pod sizes are based on annual census results from 2005 for Southern Residents (Center for Whale Research, unpubl. data) and from 1998 for Northern Residents (Ford et al. 2000).

Transients. The social organization of transients is less understood than for resident whales. Transients also occur in fairly stable maternal groups, with some associations between individual animals exceeding 15 years (Baird 2000, Baird and Whitehead 2000). Groups are thought to usually comprise an adult female and one or two of her offspring (Ford and Ellis 1999, Baird and Whitehead 2000). Male offspring typically maintain stronger relationships with their mother than female offspring, and such bonds can extend well into adulthood. Unlike residents, extended or permanent dispersal of transient offspring away from natal matrilines is common, with juveniles
and adults of both sexes participating (Ford and Ellis 1999, Baird 2000, Baird and Whitehead 2000). Some males depart to become “roving” males. These individuals do not form long-term associations with other whales, but live solitarily much of the time and occasionally join groups that contain potentially reproductive females (Baird 2000, Baird and Whitehead 2000). Roving males do not associate together in all-male groups. Females that disperse from their maternal matriline appear to be more gregarious than males, but remain socially mobile (Baird and Whitehead 2000).

Transient pods are smaller than those of residents, numbering just one to four individuals (mean = 2.4) (Baird and Dill 1996, Ford and Ellis 1999, Baird and Whitehead 2000). Ford and Ellis (1999) reported that about 70% of all transient groups contained two to six animals (median = four), 17% had 7-11 animals, 10% were lone animals (these are mostly males; Baird 1994), and 3% had 12-22 individuals. Larger groups result from matrilines temporarily joining each other to forage and socialize (Baird and Dill 1995, 1996, Ford and Ellis 1999, Baird and Whitehead 2000). In comparison with resident killer whales, transient matrilines generally maintain more flexible association patterns with one another (Baird and Dill 1995, Baird 2000). However, some matrilines associate preferentially with certain other matrilines, perhaps for reasons of enhanced foraging success (Baird and Dill 1995). As in resident clans, all members of the transient community share a related acoustic repertoire, although regional differences in vocalizations have been noted (Ford 2002).

Offshores. The social structure of offshore killer whales has not been studied in detail. These whales usually occur in large groups of 20-75 animals, but aggregations of up to 200 whales have been recorded (Walters et al. 1992, Ford et al. 2000, Krahn et al. 2002, 2004a). Membership patterns within groups appear to be dynamic, with considerable interchange of animals noted between sightings (K. C. Balcomb, unpubl. data).

Vocalizations

Vocal communication is particularly advanced in killer whales and is an essential element of the species’ complex social structure. Like all dolphins, killer whales produce numerous types of vocalizations that are useful in navigation, communication, and foraging (Dahlheim and Awbrey 1982, Ford 1989, Barrett-Lennard et al. 1996, Ford et al. 2000, Miller 2002, Miller et al. 2004, Saulitis et al. 2005). Sounds are made by air forced through structures in the nasal passage and are enhanced and directed forward by a fatty enlargement near the top of the head, known as the melon. Most calls consist of both low- and high-frequency components (Bain and Dahlheim 1994). The low-frequency component is relatively omnidirectional, with most energy directed forward and to the sides (Schevill and Watkins 1966). A fundamental tone between 250-1,500 Hz and harmonics ranging to about 10 kHz are present in this component. Most of the energy in the high-frequency component is beamed directly ahead of the animal. This component has a fundamental tone between 5-12 kHz and harmonics ranging to over 100 kHz (Bain and Dahlheim 1994).

Newborn calves produce calls similar to adults, but have a more limited repertoire (Dahlheim and Awbrey 1982). As young animals mature, complete call repertoires are most likely developed through vocal imitation and learning from association with closely related animals rather than being genetically inherited (Bowles et al. 1988, Bain 1989, Ford 1989, 1991, Miller and Bain 2000, Yurk

Killer whales produce three categories of sounds: echolocation clicks, tonal whistles, and pulsed calls (Ford 1989). Clicks are brief pulses of ultrasonic sound given singly or more often in series known as click trains. They are used primarily for navigation and discriminating prey and other objects in the surrounding environment, but are also commonly heard during social interactions and may have a communicative function (Barrett-Lennard et al. 1996). Barrett-Lennard et al. (1996) suggested that killer whales share information obtained from echolocation, but further clarification of this possible function is needed (Baird 2000). Individual clicks are highly variable in structure, lasting from 0.1 to 25 milliseconds and containing a narrow to broad range of frequencies that usually range from 4-18 kHz, but extend up to 50-85 kHz (Diercks et al. 1973, Awbrey et al. 1982, Ford 1989, Barrett-Lennard et al. 1996, Au et al. 2004). Most click trains last 2-8 seconds and have repetition rates of 2-50 clicks per second, but some exceed 10 seconds or hold as many as 300 clicks per second (Jehl et al. 1980, Ford 1989, Barrett-Lennard et al. 1996, Ford et al. 2000). Slower click trains are probably used for navigation and orientation on more distant objects, such as other whales and features on the seafloor, whereas rapid click rates appear to be used for investigating objects within 10 m (Ford 1989).

Most whistles are tonal sounds of a fundamental frequency with the addition of several harmonics (Thomsen et al. 2001). Whistles have an average dominant frequency of 8.3 kHz (range = 2-18.5 kHz), an average bandwidth of 4.5 kHz (range = 0.5-10.2 kHz), and an average of 5.0 frequency modulations per whistle (range = 0-71 frequency modulations) (Thomsen et al. 2001, Riesch et al. 2006). Mean duration is 1.8 seconds (range = 0.06-18.3 seconds). Whistle structure is stable over time, although gradual minor changes in some whistle types have been detected (Riesch et al. 2006). Whistle repertoires are essentially the same among the three Northern Resident clans, but differ substantially from that of the Southern Residents (Riesch et al. 2006). Southern Residents produce whistles for both long-range communication (e.g., during foraging and slow traveling) and social interactions, whereas the Northern Residents use whistles as their primary type of vocalization during close-range social communication (Thomsen et al. 2002, Riesch et al. 2006).

Pulsed calls are the most common type of vocalization in killer whales and resemble squeaks, screams, and squawks to the human ear. Most calls are highly stereotyped and distinctive in structure, being characterized by rapid changes in tone and pulse repetition rate, with some reaching up to 4,000 or more pulses per second (Jehl et al. 1980, Ford 1989). Duration is usually less than two seconds. Call frequencies often fall between 1-6 kHz, but may reach more than 30 kHz. Three categories of pulsed calls are distinguishable: discrete, variable, and aberrant (Ford 1989). Discrete calls have received considerable study and are especially noteworthy because they are used repetitively and have stable group-specific structural traits. Discrete calls are the predominant sound type during foraging and traveling, and are used for maintaining acoustic contact with other group members, especially those out of visual range (Ford 1989, Ford et al. 2000, Miller 2002). Variable and aberrant calls are given more frequently after animals join together and interact socially. Representative sound spectrograms of discrete calls are presented in Ford (1989, 1991).
The vocal repertoires of killer whale pods are comprised of specific numbers and types of repetitive
discrete calls, which together are known as a dialect (Ford 1991). Dialects are complex and stable
over time, and are unique to single pods. Call patterns and structure are also distinctive within
matrilines (Miller and Bain 2000). Individuals likely learn their dialect through contact with their
mother and other pod members (Ford 1989, 1991, Miller and Bain 2000). Dialects are probably an
important means of maintaining group identity and cohesiveness. Similarity in dialects likely
reflects the degree of relatedness between pods, with variation building through time as matrilines
have thus far been unable to determine whether specific calls have particular meanings or are
associated with certain activities. Deecke et al. (2000) reported that some calls undergo gradual
modification in structure over time, probably due to cultural drift, maturational effects, or some
combination thereof.

Dialects of resident killer whale pods contain seven to 17 (mean = 11) distinctive call types (Ford
1991). Pods with similar vocal dialects make up social groups, known as clans. Transient dialects
are much different, having only four to six discrete calls, none of which are shared with residents
(Ford and Ellis 1999, Deecke et al. 2005). All members of the west coast transient community
possess the same basic dialect, as would be expected due to this population’s fluid social system,
although some minor regional variation in call types is evident (Ford and Ellis 1999). Preliminary
research indicates that offshore killer whales have group-specific dialects unlike those of residents
and transients (Ford et al. 2000).

Hearing and Other Senses

As with other delphinids, killer whales hear sounds through the lower jaw and other portions of the
head, which transmit the sound signals to receptor cells in the middle and inner ears (Møhl et al.
1999, Au 2002). Killer whale hearing is the most sensitive of any odontocete tested thus far.
Hearing ability extends from 1 to at least 120 kHz, but is most sensitive in the range of 18-42 kHz
(Szymanski et al. 1999). The most sensitive frequency is 20 kHz, which corresponds with the
approximate peak energy of the species’ echolocation clicks (Szymanski et al. 1999). This
frequency is lower than in many other toothed whales. Hearing sensitivity declines below 4 kHz
and above 60 kHz. Killer whale vision is also considered well developed (White et al. 1971).

Swimming and Diving Behavior

The typical swimming pattern of foraging and traveling killer whales is a sequence of three to five
shallow dives lasting 10-35 seconds each followed by a long dive, with surface blows of 3-4
seconds occurring after each dive (Erickson 1978, Morton 1990, Ford and Ellis 1999). This pattern
is typically synchronized among pod members. Dive cycles in resident whales average about 3-5
minutes in total length and have a long dive usually lasting 2-4 minutes (Morton 1990; Ford and
Ellis 1999; Baird et al. 2005). Transients have longer dive cycles, with long dives averaging 4-7
minutes (range = 1-17 minutes) (Erickson 1978, Morton 1990, Ford and Ellis 1999). Cycle lengths
While in the inshore waters of southern British Columbia and Washington, the Southern Residents spend 95% of their time underwater, nearly all of which is between the surface and a depth of 30 m (Baird 2000; Baird et al. 2003, 2005). During a study of 28 whales tagged with time-depth recorders from 1993-2002, Baird et al. (2003, 2005) reported an average of about 0.7 to two dives per hour made below 30 m, with such dives occurring more often during daytime. These represented 5% of all dives and occupied less than 2.5% of an animal’s total dive time. During the day, dives greater than 150 m deep were made on average about once every five hours. Overall dive rates were greater during the day than at night, but did not differ among pods or with age (Baird et al. 2005). Dive rates below 30 m were also greater in adult males than adult females, with adult males diving deeper than 100 m more than twice as often as adult females. Maximum dive depths for all ages averaged 141 m, with 10 study animals exceeding depths of 190 m. Three-year-old whales reached mean maximum depths of 134 m, indicating that diving skills are developed fairly early in life (Baird et al. 2005). Much less is known about the diving behavior of transients, but one similarly tagged individual spent more than 66% of its time at depths between 20 and 60 m (Baird 1994). The deepest dives reported for killer whales are 264 m by a Southern Resident (Baird et al. 2005) and 260 m by a trained animal (Bowers and Henderson 1972). However, Baird et al. (2003) speculated that the Southern Residents are probably capable of diving to the deepest portions of the core inland waters of their summer range, which reach approximately 330 m.

Killer whales normally swim at speeds of 5-10 km per hour, but can attain maximum speeds of 40 km per hour (Lang 1966, Erickson 1978, Kruse 1991, Kriete 1995, Williams et al. 2002a). Descent and ascent rates of diving animals typically average 4-6.5 km per hour, or 1.1-1.8 m per second, but can sometimes reach velocities of 22-29 km per hour, or 6-8 m per second (Baird 1994). Bursts of speed during dives commonly occur when prey are chased (Baird et al. 2003). Swimming speeds are greater during the day than at night for the Southern Residents (Baird et al. 2005).

Diet and Foraging

As top-level predators, killer whales feed on a variety of marine organisms ranging from fish to squid to other marine mammal species. Some populations have specialized diets throughout the year and employ specific foraging strategies that reflect the behavior of their prey. Such dietary specialization has probably evolved in regions where abundant prey resources occur year-round (Ford 2002). Cooperative hunting, food sharing, and innovative learning are other notable foraging traits in killer whales (Smith et al. 1981, Lopez and Lopez 1985, Felleman et al. 1991, Hoelzel 1991, Jefferson et al. 1991, Hoelzel 1993, Similä and Ugarte 1993, Baird and Dill 1995, Boran and Heimlich 1999, Guinet et al. 2000, Pitman et al. 2003, Ford and Ellis 2006). Cooperative hunting presumably increases hunting efficiency and prey capture success of group members, and may also enhance group bonds. Additionally, group living facilitates knowledge of specialized hunting skills and productive foraging areas to be passed traditionally from generation to generation (Lopez and Lopez 1985, Guinet 1991, Guinet and Bouvier 1995, Ford et al. 1998). Some foraging styles require extensive practice and learning (e.g., Guinet 1991).

Dietary information was formerly derived primarily through examination of stomach contents from stranded whales or those killed during commercial whaling operations, but in recent years, direct observations of feeding behavior have added new data on the species’ food habits. Killer whales

Residents. Fish are the major dietary component of resident killer whales in the northeastern Pacific, with 22 species of fish and one species of squid (*Gonatopsis borealis*) known to be eaten (Scheffer and Slipp 1948, Ford et al. 1998, 2000, Saulitis et al. 2000, Ford and Ellis 2006). Observations from this region indicate that salmon are preferred as prey. Most published dietary data originate from a single long-term study using focal animal observations and scale and tissue sampling that was focused primarily on the Northern Residents during the late spring, summer, and fall (Ford et al. 1998, Ford and Ellis 2005, 2006). These techniques are susceptible to bias, especially when conducted opportunistically, and may underestimate the extent of feeding on bottom fish (Baird 2000). Salmon were found to represent at least 97% of Northern Resident prey (n = 463), with Chinook salmon (*Oncorhynchus tshawytscha*) comprising 69% of identified prey. The preference for Chinook was noted among all age and sex classes of Northern Residents. This selectivity also occurred despite the much lower numerical abundance of Chinook in the study area in comparison to other salmonids and is probably related to the species’ large size, high fat and energy content (see Salmon Body Composition), and year-round occurrence in the area (Ford and Ellis 2006). Whales also captured older (i.e., larger) than average Chinook. Chum salmon (*O. keta*), the second largest salmonid in the region, comprised 25% of identified prey and were mostly taken in the fall. Other salmonids were eaten in much smaller amounts and included pink (*O. gorbuscha*, 3% of the diet) and coho (*O. kisutch*, 2%) salmon. Other species such as Pacific halibut (*Hippoglossus stenolepis*), a number of smaller flatfish, yelloweye rockfish (*Sebastes ruberrimus*), lingcod (*Ophiodon elongatus*), greenling (*Hexagrammos spp.*), and Pacific herring (*Clupea pallasi*) also contributed to the diet, but appeared to be eaten in only small amounts during the summer and
fall (Ford et al. 1998, Ford and Ellis 2006). Similar dietary preferences extended across all three of the Northern Resident clans.

Considerably less dietary information exists for Southern Resident killer whales and is best considered preliminary. Nevertheless, known feeding records (n = 115) suggest that diet resembles that of the Northern Residents, with a strong preference for Chinook salmon (78% of identified prey) during late spring to fall (Hanson et al. 2005, Ford and Ellis 2006). Chum salmon (11%) are also taken in significant amounts, especially in autumn. Other species eaten include coho (5%), steelhead (O. mykiss, 2%), sockeye (O. nerka, 1%), and non-salmonids (e.g., Pacific herring and quillback rockfish [Sebastes maliger]; 3% combined). The toxicology analyses of Krahn et al. (2002), who examined the ratios of DDT (and its metabolites) to various PCB compounds in the whales, also suggest that the whales feed on Puget Sound salmon rather than other fish species.

Little is known about the winter and early spring foods of Southern and Northern Residents or whether individual pods have specific dietary preferences. Future research on the food habits of both populations in more varied locations and throughout the year may find meaningful deviations from the patterns described above. Data gathered thus far for the Southern Alaska Residents also indicate that salmon are heavily preferred as prey, with extensive use of coho salmon recorded in Prince William Sound (Saulitis et al. 2000) and regular consumption of Chinook salmon in Kenai Fjords (Matkin et al. 2003). However, these observations suffer from the limitations reported by Ford et al. (1998) and small sample sizes. Western North Pacific resident killer whales also appear to target salmon as prey (V. Burkanov, pers. comm. in Krahn et al. 2004a).

Resident whales have been seen to harass porpoises and harbor seals (Phoca vitulina), but never kill to eat them (Ford et al. 1998). Several observations of Southern Residents killing harbor porpoises were observed in 2005, however, the porpoises were not consumed (R. W. Baird, unpublished data.)

Resident whales spend about 50-67% of their time foraging (Heimlich-Boran 1988, Ford 1989, Morton 1990, Felleman et al. 1991). Groups of animals often disperse over several square kilometers while searching for salmon, with members moving at roughly the same speed (range of 3-10 km/hr, mean = 6 km/hr) and direction (Ford 1989, 2002, Ford et al. 1998). Foraging episodes usually cover areas of 3-10 km² and last 2-3 hours, but may extend up to 7 hours. Individual salmon are pursued, captured, and eaten by single animals or small subgroups, usually a mother and her young offspring (Scheffer and Slipp 1948, Jacobsen 1986, Osborne 1986, Felleman et al. 1991, Ford 1989, Ford et al. 1998). Foraging whales commonly make two or three brief shallow dives, followed by a longer dive of 1-3 minutes (Ford et al. 2000). Pursuit of prey often involves subtle changes in swimming direction, speed, and dive length, or less frequently may be vigorous with rapid chasing or turning (Hanson et al. 2005, Ford and Ellis 2006). Several whales may occasionally work together to corral fish near the shore, but coordinated encirclement of prey has not been observed in Washington or British Columbia (Ford 1989, Ford et al. 1998). The large sizes of resident pods may benefit members by improving the success rate of locating scattered salmon (Heimlich-Boran 1988, Bigg et al. 1990, Hoelzel 1993). Prey are detected through a combination of echolocation and passive listening (Barrett-Lennard et al. 1996), whereas vision and echolocation are probably used during prey capture. Foraging animals produce rapid series of evenly spaced echolocation clicks, but whistles and pulsed calls are also emitted during this activity.
Echolocation signals allow salmon to be detected out to distances of about 100 m (Au et al. 2004). More foraging may occur during the day than at night (Baird et al. 2005), although inshore feeding possibly increases at night (Scheffer and Slipp 1948). There is some evidence that adult resident males forage differently than females and immatures, possibly because their larger size makes them less maneuverable in shallow waters (Baird 2000, Ford and Ellis 2006). Adult males have been noted to hunt in deeper waters than females, dive more deeply than females, and spend more time foraging independently on the edges of pods (Ford et al. 1998; Baird et al. 2005, Ford and Ellis 2006). Females and subadults occasionally attempt to capture salmon hiding in rock crevices near shore, a behavior not seen in adult males. Baird et al. (2005) reported no significant differences in the diving behavior of the three Southern Resident pods, suggesting that each hunts for prey in a similar manner.

Recent studies have identified prey sharing as an important aspect of Northern Resident killer whale foraging and social behavior (Ford and Ellis 2005). Foraging by resident killer whales often involves cooperation among kin-related group members, and prey items are frequently shared at the surface by two or more whales after a capture. Ford and Ellis (2006) observed or strongly suspected sharing in 76% of 235 feeding events. Adult males shared prey much less often than females and juveniles. Prey sharing was unrelated to prey size (Ford and Ellis 2005). The occurrence of prey sharing in Southern Residents has been strongly suspected (NWFSC unpubl. data, Cascadia Research unpubl. data).

Transients usually forage in smaller groups than residents, with mean group size numbering from three to five whales depending on the prey species (Baird and Dill 1996, Ford et al. 1998, 2005a). Transients are stealthy hunters and often rely on surprise to capture unsuspecting prey. Unlike residents, they are much quieter while foraging, which probably allows them to avoid acoustical detection by their wary mammalian prey (Morton 1990, Felleman et al. 1991, Barrett-Lennard et al. 1996, Ford and Ellis 1999). Transients may instead rely heavily on passive listening to detect the sounds of swimming prey (Barrett-Lennard et al. 1996). Vision may also be useful (Baird 2000). Transients spend 60-90% of daylight hours foraging and commonly hunt in both nearshore and open-water habitats (Heimlich-Boran 1988, Morton 1990, Baird and Dill 1995, Ford and Ellis 1999).
A recent theory proposes that predation by mammal-eating killer whales, possibly transients, may have been responsible for a series of precipitous population declines in harbor seals, northern fur seals (*Callorhinus ursinus*), Steller’s sea lions, and sea otters (*Enhydra lutris*) in southwestern Alaska between the 1960s and 1990s (Estes et al. 1998, Hatfield et al. 1998, Doroff et al. 2003, Springer et al. 2003, Williams et al. 2004). Such predation may have resulted after heavy commercial whaling decimated baleen and sperm whale numbers in the North Pacific after World War II, perhaps causing at least some killer whales to shift to other prey species (Springer et al. 2003). A recent increase in predation on belugas (*Delphinapterus leucas*) by probable transients in Cook Inlet, Alaska, may be due to similar reasons (Shelden et al. 2003). The “sequential meagafaunal collapse” theory remains highly controversial and some scientists have pointed out the lack of empirical evidence to support the theory. Several authors have recently refuted the assumptions that North Pacific mammal-eating killer whales depended on large whales as prey either prior to or concurrent with the whaling era, or that a shift toward pinnipeds and otters occurred in their diets (DeMaster et al. 2006, Mizroch and Rice 2006).

Offshores. Little is known about the diets of offshore killer whales. They are suspected to feed primarily on fish and squid, based on their frequent use of echolocation, large group sizes, the stomach contents of a few animals, a single feeding observation and very limited testing of fatty acid concentrations (Ford et al. 2000, Heise et al. 2003, Herman et al. 2005, Jones 2006). Prey may include sharks, halibut, and migratory fish (Krahn et al. 2004a, Jones 2006). However, preliminary analyses of stable isotopes and organochlorine contaminants in offshores suggest the possibility that marine mammals are also eaten (Herman et al. 2005).

Food requirements. Captive killer whales consume about 3.6–4% of their body weight daily (Sergeant 1969, Kastelein et al. 2000). Food intake in captive animals gradually increases from birth until about 20 years of age (Kriete 1995, Kastelein et al. 2003). For example, a captive female ate about 22 kg of fish per day at one year of age, 45 kg per day at 10 years of age, and about 56 kg per day at 18 years of age (Kastelein and Vaughan 1989, Kastelein et al. 2000). Food consumption has also been noted to increase among captive females late in pregnancy or lactating (Kriete 1995, Kastelein et al. 2003). Due to their greater activity levels, wild killer whales presumably have greater food demands than captive individuals (Kastelein et al. 2003). Osborne (1999) estimated that the energy requirements of killer whales are about 85,000 kcal per day for juveniles, 100,000 kcal per day for immatures, 160,000 kcal per day for adult females, and 200,000 kcal per day for adult males (Osborne 1999). Baird and Dill (1996) reported a somewhat higher mean energy intake of 62 kcal/kg/day among transient whales. Williams et al. (2004) estimated about 193,000 and 287,000 kcal per day for adult free-ranging females and males, respectively, consuming whole prey. Additional information on metabolic rates of wild killer whales is needed to interpret if captive studies underestimate requirements of more active wild animals or overestimate requirements because captive animals are on a generous weight maintenance diet.

Based on the average size values for five salmon species combined, Osborne (1999) estimated that adult Southern Residents must consume about 28-34 adult salmon daily and that younger whales (<13 years of age) need 15-17 salmon daily to maintain their energy requirements. These data provided a “rule of thumb” of about 25 salmon per day per whale, estimated over all age classes. Extrapolation of this estimate indicates that a Southern Resident population of 90 whales would eat
about 820,000 adult salmon annually (Osborne 1999). This does not, however, account for any other prey species and is therefore likely an overestimate of potential salmon consumption. The average fish size was based on a combination of five species, so the estimate does not account for consumption of varying amounts of different species (and size) of salmon.

Other Behavior

In addition to foraging, killer whales spend significant amounts of time traveling, resting, and socializing (Baird and Dill 1995, Ford 2002, Saulitis et al. 2000). Limited evidence from radiotracking and acoustic monitoring indicates that most behavior patterns are similar during day and night (Erickson 1978, Osborne 1986). By comparison, examination of diving behavior and swim speeds suggests killer whales are more active in the daytime (Baird et al. 2005).

Traveling. Whales swimming in a constant direction at a slow, moderate, or rapid pace without feeding are considered to be traveling (Jacobsen 1986, Baird and Dill 1995, Ford 1989, Ford and Ellis 1999, Ford et al. 2000). This behavior is usually seen among animals moving between locations, such as desirable feeding areas. Speeds of about 10 km/hr (range = 4-20 km/hr) are maintained, which is usually significantly faster than during foraging. Traveling whales often line up abreast in fairly tight formations and commonly surface and dive in synchrony, with individuals occasionally jumping entirely out of the water. Resident animals are usually much more vocal while traveling than transients (Barrett-Lennard et al. 1996), but may at times be silent. In Washington and British Columbia, traveling occupies about 15-31% of the total activity budget of transients, but only about 4-8% of the time of Northern Residents (Ford 1989, Morton 1990, Baird and Dill 1995). Southern Residents reportedly spend more time traveling than Northern Residents (Heimlich-Boran 1988), perhaps because of longer distances between their feeding sites (Ford et al. 2000).

Resting. This behavior often follows periods of foraging. In resident groups, whales usually gather together abreast in a tight formation, with animals diving and surfacing in subdued unison (Jacobsen 1986, Osborne 1986, Ford 1989, Baird and Dill 1995, Ford et al. 2000). Individuals often arrange themselves according to matriline or pod, and offspring usually swim near or touching their mother. Forward motion is slow (mean = 3 km/hr) or stops entirely. Dives and surfacings become characteristically regular, with a series of several short shallow surfacings lasting 2-3 minutes followed by a longer dive of 2-5 minutes. Resting whales are usually silent, except for occasional vocalizations. Resting periods average about 2 hours, but may last from 30 minutes to 7 hours (Osborne 1986, Ford 1989). Transient whales display similar resting behavior, but spend only 2-7% of their time resting, compared to 10-21% for residents (Heimlich-Boran 1988, Ford 1989, Morton 1990, Baird and Dill 1995, Ford and Ellis 1999, Saulitis et al. 2000).

Socializing. Killer whales perform numerous displays and interactions that are categorized as socializing behaviors (Ford 1989, Ford and Ellis 1999, Ford et al. 2000). During socializing, all members of a pod may participate or just a few individuals may do so while others rest quietly at the surface or feed. Socializing behaviors are seen most frequently among juveniles and may represent a type of play (Jacobsen 1986, Osborne 1986, Ford 1989, Rose 1992). They include
chasing, splashing at the surface, spyhopping, breaching, fin slapping, tail lobbing, head standing, rolling over other animals, and playing with objects such as kelp or jellyfish. Descriptions and photographs of these behaviors are presented in Jacobsen (1986) and Osborne (1986). Wave riding occasionally takes place in the wakes of vessels and on naturally generated waves (Jacobsen 1986, Ford et al. 2000), as does bow-riding in the bow waves of boats (Dahlheim 1980). Socializing behavior may involve considerable physical contact among animals. All-male subgroups commonly engage in sexual behavior, such as penile erections and nosing of genital areas (Haenel 1986, Osborne 1986, Jacobsen 1986, Ford 1989, Rose 1992). Play and sexual behavior may help adolescents, especially males, gain courtship skills (Rose 1992). Whales become especially vocal while socializing and emit a wide range of whistles and calls heard infrequently during other activities, such as foraging and resting (Ford 1989, Barrett-Lennard et al. 1996, Thomsen et al. 2002). Residents spend about 12-15% of their time engaged in socializing (Heimlich-Boran 1988, Ford 1989, Saulitis et al. 2000). Transient whales socialize less than residents and do so most often after successful hunts (Heimlich-Boran 1988, Baird and Dill 1995, Ford and Ellis 1999, Saulitis et al. 2000).

Several differences in socializing behavior have been documented among resident killer whale communities in the northeastern Pacific (Ford 1989, Ford et al. 2000). Southern Residents perform aerial displays more frequently and with greater vigor than Northern Residents. They also engage in a greeting ceremony that occurs when pods meet after being separated for a day or more (Osborne 1986, Ford et al. 2000). During this interaction, pods approach each other in two tight lines, stop for 10-30 seconds at the surface when 10-50 m apart, then merge underwater with considerable excitement, vocalizing, and physical contact. Beach rubbing, which involves whales visiting particular beaches to rub their bodies on smooth pebbles in shallow water (Jacobsen 1986), is common among Northern Residents, but has never been observed in Southern Residents or transients (Ford 1989, Ford et al. 2000). Beach rubbing also occasionally occurs among some Southern Alaska Residents inhabiting Prince William Sound (Matkin and Saulitis 1994, 1997). These examples are particularly illustrative of the cultural variation that can occur among these communities (Whitehead et al. 2004).

Courtship and mating. Courtship and mating behavior remains poorly documented among wild killer whales. Jacobsen (1986) reported some preliminary observations. In captive situations, males may court a particular estrous female for 5-10 days and have been noted to copulate with anestrous and pregnant females as well (Duffield et al. 1995). It is unknown whether similar behavior occurs in the wild.

Parturition. Stacey and Baird (1997) described various behaviors associated with the birth of a resident killer whale, which took place within a pod of 11-13 animals. An individual presumed to be the mother was seen making several rapid rotations at the surface during a 30-second period. Birth then apparently took place underwater and was immediately followed by three pod members lifting the newborn entirely out of the water for several seconds. Unusual swimming behavior by the group, bouts of high-speed swimming and percussive activity, and additional lifting of the calf was seen during the next two hours. Bouts of nursing take place both underwater and at the surface (Jacobsen 1986). Newborn calves in captivity have been observed to nurse an average of 32-34
times per day totaling 3.2-3.6 hours per day, with suckling bouts lasting a mean of 6.8-7.2 min (Kastelein et al. 2003).

Alloparental care. Non-reproductive female and male killer whales sometimes tend and give parent-like care to young animals that are not their own, a behavior known as alloparental care (Haenel 1986, Waite 1988). Older immatures are commonly the recipients of such care after their mothers give birth to new calves. Adult males have occasionally been seen to “baby-sit” groups of calves and juveniles (Haenel 1986, Jacobsen 1986).

Care-giving behavior. This behavior is directed at stricken individuals by other members of a group (Zenkovich 1938, Tomilin 1957, Caldwell and Caldwell 1966). Ford et al. (2000) published an account of one such incident involving a pod comprised of a male, female, and two calves in the Strait of Georgia in 1973. One of the calves was struck and severely injured by the propeller of a ferryboat. The male and female swam in closely and cradled the injured calf between them to prevent it from turning upside-down. The male regularly repositioned itself to maintain its location next to the calf.

Aggressive behavior. Aggressive interactions between killer whales are rarely witnessed. Bisther (2002) reported occasional antagonistic encounters involving the displacement of one killer whale pod by another at herring feeding sites in Norway, but such behavior has never been seen in the northeastern Pacific. The parallel scarring patterns seen on the backs and dorsal fins of some killer whales are suggestive of intraspecific aggression (Scheffer 1968, Greenwood et al. 1974, Jacobsen 1986, Visser 1998). However, some of these markings possibly result instead from social interactions or the defensive responses of pinnipeds (Jacobsen 1986, Ford 1989, Dahlheim and Heyning 1999).

Interactions between transients and residents. Resident killer whales are not known to interact socially with transient whales. Baird (2000) summarized evidence that members of the two communities in fact deliberately avoid one another when traveling on intersecting routes. In 11 observations where a resident and transient group approached within several kilometers of each other, the transients responded by changing their travel direction eight times, while the residents did so in three instances. However, on eight other occasions when non-intersecting courses were involved, the groups passed within several kilometers of one another without altering their paths. Reasons for avoidance are speculative, but may be related to the usually smaller group sizes of transients or to perceived threats to vulnerable calves. Residents perhaps show less evasive behavior simply because they are unaware of the presence of transient groups, which usually forage quietly. A single aggressive interaction between the two forms has been witnessed and involved about 13 residents chasing and attacking three transients (Ford and Ellis 1999). Alaskan residents and transients similarly avoid contact with each other (Matkin and Saulitis 1997).

Movements and Dispersal

Killer whale movements are generally thought to be far ranging, but detailed information on year-round travel patterns is lacking for virtually all populations. Significant time gaps with few or no
location data exist for all populations, including the well-studied Southern and Northern Resident communities. Researchers have relied on non-intrusive observational methods, especially photo-documentation and focal group following, to study population distribution and movements of individual whales. However, these techniques suffer from seasonal biases in viewing effort due to limitations in the distances that observers can travel, inclement weather, and seasonal availability of daylight (Baird 2001, Hooker and Baird 2001). A lack of photo-identification work in offshore areas is problematic for many populations (Baird 2000). Radio and satellite telemetry technology have been employed on a limited basis and techniques for long-term deployments on killer whales are still being developed and refined.

Clear evidence of annual north-south migrations has not been documented for any killer whale population (Baird 2001), although such movements are suspected among some animals visiting the Antarctic (Mikhalev et al. 1981, Visser 1999a, Pitman and Ensor 2003). Regional movement patterns are probably best known for populations in the northeastern Pacific and may be illustrative of movements occurring in other parts of the world. Both resident and transient killer whales have been recorded year-round in Washington, British Columbia, and Alaska (Heimlich-Boran 1988, Baird and Dill 1995, Olson 1998, Baird 2001). Many pods inhabit relatively small core areas for periods of a few weeks or months, but travel extensively at other times. Known ranges of some individual whales or pods extend from central California to the Queen Charlotte Islands off northern British Columbia (a distance of about 2,200 km) for Southern Residents, from southern Vancouver Island to southeastern Alaska (about 1,200 km) for Northern Residents, from southeastern Alaska to Kodiak Island (about 1,450 km) for Southern Alaska Residents, and from central California to southeastern Alaska (about 2,660 km) for west coast transients (Goley and Straley 1994; Dahlheim and Heyning 1999; Krahn et al. 2002; J. K. B. Ford and G. M. Ellis, unpubl. data). Both types of whales can swim up to 160 km per day (Erickson 1978, Baird 2000), allowing rapid movements between areas. For example, members of K and L pods once traveled a straight-line distance of about 940 km from the northern Queen Charlotte Islands to Victoria, Vancouver Island, in seven days (J. K. B. Ford and G. M. Ellis, unpubl. data). In Alaska, one resident pod journeyed 740 km in six days and another made a 1,900-km round trip during a 53-day period (Matkin et al. 1997). Transients are believed to travel greater distances and have larger ranges than residents (Goley and
Straley 1994, Dahlheim and Heyning 1999, Baird 2000), as reflected by maximum home range estimates of 140,000 km² for transients and 90,000 km² for residents suggested by Baird (2000). A linear distance of 2,660 km covered by three transients from Glacier Bay, Alaska, to Monterey Bay, California (Goley and Straley 1994), is one of the longest recorded movements by the species (see Guerrero-Ruiz et al. 2005).

Southern Residents. Little information is available on the movements of this community prior to the early 1970s, when observers were unaware of the distinction between resident, transient, and offshore whales. Scheffer and Slipp’s (1948) report suggests that killer whales in general frequented many of the same areas in Washington during the 1930s and 1940s that are currently occupied by Southern Residents and transients. They noted that whales, presumably Southern Residents, commonly moved into Tulalip Bay and the waters surrounding Camano Island during salmon and herring runs. Palo (1972) remarked that killer whales visited southern Puget Sound most often during the fall and winter. He added that the whales’ preferred access route to this portion of the sound was through Colvos Passage along the west side of Vashon Island and that McNeil Island and Carr Inlet were visited annually. These sites were productive areas for salmon and herring in the 1960s (Palo 1972).

Photo-identification work and tracking by boats have provided considerable information on the ranges and movements of Southern Resident killer whales since the early 1970s. In addition, The Whale Museum in Friday Harbor, Washington has maintained a database since the 1970s that includes sightings from researchers as well as opportunistic observations from a variety of sources, such as the public, the commercial whale watching industry pager system, the Soundwatch Boater Education Program, and land-based sighting from Lime Kiln Point State Park (The Whale Museum 2003, 2005). The Whale Museum data set is the most comprehensive long-term data set available on broad-scale whale distribution in inland waters. We have used this data to create a GIS database and maps (Figure 5).

Southern Resident ranges are best known from late spring to early autumn, when survey effort is greatest. During this period, all three Southern Resident pods are regularly present in the Georgia Basin (defined as the Georgia Strait, San Juan Islands, and Strait of Juan de Fuca) (Heimlich-Boran 1988, Felleman et al. 1991, Olson 1998, Osborne 1999, Hauser 2006), with K and L pods typically arriving in May or June and spending most of their time there until departing in October or November (Figure 6). However, during this season, both pods make frequent trips lasting a few days to the outer coasts of Washington and southern Vancouver Island (Ford et al. 2000). J pod differs considerably in its movements during this time and is present only intermittently in the Georgia Basin and Puget Sound.

While in inland waters during warmer months, all of the pods concentrate their activity from the south side of the San Juan Islands through Haro Strait northward to North and South Pender Islands and Boundary Passage (Figure 5; Hauser 2006). Less time is generally spent elsewhere, including
Figure 5. Distribution of Southern Resident killer whale sightings from 1990-2003 (The Whale Museum 2003). Multiple sightings of whales in the same location on the same day were eliminated to reduce bias and resulted in 11,836 unique sightings.
Figure 6. Monthly occurrence of the three Southern Resident killer whale pods (J, K, and L) in the inland waters of Washington and British Columbia, 1976-2005. This geographic area is defined as the region east of Race Rocks at the southern end of Vancouver Island and Port Angeles on the Olympic Peninsula. Pods were recorded as present during a month if they were sighted on at least one day. Data come from a historical sighting archive held at The Whale Museum (2005).

Other sections of the Georgia Strait, Strait of Juan de Fuca, and San Juan Islands and the Southern Gulf Islands, Rosario Strait, Admiralty Inlet west of Whidbey Island, and Puget Sound. Individual pods are generally similar in their preferred areas of use (Olson 1998), although some seasonal and temporal differences exist in areas visited (Hauser 2006). For example, Swanson Channel and Active Pass are used most often by J pod, but not used by L pod. J pod also visits Rosario Strait more frequently than K or L pods. L pod is the only group that regularly visits an area in Strait of Juan de Fuca off southern Vancouver Island. Pods probably seek out and forage in areas that salmon most commonly occur, especially those associated with migrating salmon (Heimlich-Boran 1986a, 1988, but see McCluskey 2006). Many of the most important sites reported by Hauser...
November 2006 32 NMFS

During early autumn, Southern Resident pods, especially J pod, expand their routine movements into Puget Sound to likely take advantage of chum and Chinook salmon runs (Osborne 1999). In recent years, this has become the only time of year that K and L pods regularly occur in the Sound. Movements into seldom-visited bodies of water may occur at this time. One noteworthy example of such use occurred in Dyes Inlet near Bremerton in 1997. Nineteen members of L pod entered the 19-km²-sized inlet, which is surrounded by urban and residential development, on 21 October during a strong run of chum salmon into Chico Creek and remained there until 19 November, when salmon abundance finally tapered off. The reasons for this long length of residence are unclear, but may have been related to food abundance (K. C. Balcomb, pers. comm.; D. K. Ellifrit, pers. comm.) or a reluctance by the whales to depart the inlet because of the physical presence of a bridge crossing the Port Washington Narrows and associated road noise (J. Smith, pers. comm.). Southern Residents (J pod) have also been documented in Hood Canal, by sound recordings in the 1995 and 1958, photographs from 1973 and anecdotal accounts.

Recent analyses by McCluskey (2006) found no clear relationships between the summer and early autumn movement patterns of Southern Resident pods and salmon distribution from 1991-2001. In most years while in inland waters, the total areas covered by each pod and the shape of their travel patterns were not linked to areas of high abundance of Chinook, chum, or all salmon species combined, as measured through human harvests and catch per unit effort. All three pods showed reduced movements during the early 1990s, when overall salmon abundance was higher and the Southern Resident population was increasing, than in the late 1990s, when salmon were less abundant and the whale population was decreasing. McCluskey (2006) also reported that L pod generally traveled over larger areas and showed greater movement complexity than J and K pods in all but one year from 1991-2001, which was perhaps related to L pod’s larger size. The variable results of this study are indicative of the complexity in the marine ecosystem in the Georgia Basin and Puget Sound, as well as the limitations in existing whale and salmon data.

Late spring to early fall movements of Southern Residents in the Georgia Basin have remained fairly consistent since the early 1970s, with strong site fidelity shown to the region as a whole. However, some areas of use have changed over time. Visitation of Puget Sound has diminished since the mid-1980s, whereas Swanson Channel receives noticeably more use now than in the past (K. C. Balcomb, unpubl. data). Long-term differences in the availability of salmon at particular sites are one possible explanation for these alterations. Another theory is that certain older experienced whales that were knowledgeable of good feeding sites, are no longer present to direct the movements of their pods to these sites or along favored travel routes.

During the late fall, winter, and early spring, the ranges and movements of the Southern Residents are less well known. J pod continues to occur intermittently in the Georgia Basin and Puget Sound throughout this time (Figure 6), but its location during apparent absences is uncertain (Osborne 1999). One sighting of this pod was made off Cape Flattery, Washington, in March 2004 (Krahn et al. 2004a). Prior to 1999, K and L pods followed a general pattern in which they spent progressively smaller amounts of time in inland waters during October and November and departed.
them entirely by December of most years (Figure 6; Osborne 1999). Sightings of both groups passing through the Strait of Juan de Fuca in late fall suggested that activity shifted to the outer coasts of Vancouver Island and Washington, although it was unclear if the whales spent a substantial portion of their time in this area or were simply in transit to other locations (Krahn et al. 2002). Since the winter of 1999-2000, K and L pods have extended their use of inland waters until January or February each year (Figure 6). The causes behind this change are unknown, but may relate to altered food availability, for example, increased abundance of chum or hatchery Chinook in these waters or reduced food resources along the outer coast (R. W. Osborne, pers. comm.). Thus, since 1999, both pods are completely absent from the Georgia Basin and Puget Sound only from about early or mid-February to May or June. In recent years, regular use of the waters around Vashon Island in south-central Puget Sound has also been documented for all three pods collectively from October to early January (M. Sears, pers. comm.)

Areas of activity by K and L pods are poorly known during their absences. Only 34 verified sightings or strandings of J, K or L pods have occurred along the outer coast from 1975-2006, with most made from January to May (Table 2). These include 15 records off Vancouver Islands and the Queen Charlottes, 11 off Washington, four off Oregon, and four off central California. Most records have occurred since 1996, but this is perhaps more likely due to increased viewing effort along the coast rather than a recent change in the pattern of occurrence for this time of year. The Southern Residents were formerly thought to range southward along the coast only to about Grays Harbor (Bigg et al. 1990) or the mouth of the Columbia River (Ford et al. 2000). However, recent sightings of members of K and L pods in Oregon (L pod at Depoe Bay in April 1999 and Yaquina Bay in March 2000, unidentified Southern Residents at Depoe Bay in April 2000, and members of K and L pods off of the Columbia River) and California (17 members of L pod and four members of K pod at Monterey Bay on 29 January 2000, L71 and probably other L pod members at Monterey Bay on 13 March 2003, and members of L pod near the Farallon Islands on 16 February 2005 and again off Pt. Reyes on 26 January 2006) have considerably extended the southern limit of their known range (Table 2). Both Monterey sightings coincided with large runs of salmon, with feeding witnessed in 2000 (Black et al. 2001). L pod was also seen feeding on unidentified salmon off Westport, Washington, in March 2004 during the spring Chinook run in the Columbia River (M. B. Hanson, pers. obs., in Krahn et al. 2004a). In addition to the sighting information, recordings of killer whale vocalizations recorded by hydrophones in coastal waters are being analyzed to identify types and pods of the whales (NWFSC unpubl. data).

Available information suggests that K and L pods travel to northern Vancouver Island and occasionally to the Queen Charlotte Islands during May and June. Multiple sightings have been made during this period near Tofino on the west-central coast of Vancouver Island (Krahn et al. 2004a). Both pods sometimes make their initial spring entry into the Strait of Georgia via Johnstone Strait (Ford et al. 2000), implying regular movement around the northern end of Vancouver Island. On 28 May 2003, members of both pods were identified for the first time in the Queen Charlotte Islands, when a group of 30 or more whales was viewed off Langara Island (54°15'N, 133°02'W) at the north end of the island group about 46 km south of Alaska (J. K. B. Ford and G. M. Ellis, unpubl. data). Other records from this region include the carcass of an
Table 2. Summary of known sightings of Southern Resident killer whales along the outer Pacific Ocean coast from California to British Columbia. Adapted and updated from Krahn et al. (2004a).

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Identification</th>
<th>Comments</th>
<th>Source b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>British Columbia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 Jan 1982</td>
<td>Off Barkley Sound, sw Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>1, 2</td>
</tr>
<tr>
<td>21 Oct 1987</td>
<td>Coal Harbour, northern Vancouver Island</td>
<td>Part of L pod</td>
<td>Whales were far up an inlet</td>
<td>2</td>
</tr>
<tr>
<td>3 May 1989</td>
<td>Cape Scott, northern Vancouver Island</td>
<td>K pod</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4 Jul 1995</td>
<td>Hippa Island, s Queen Charlotte Islands</td>
<td>Southern Resident</td>
<td>Stranded c</td>
<td>2</td>
</tr>
<tr>
<td>May 1996</td>
<td>Langara Island, n Queen Charlotte Islands</td>
<td>L pod</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>4 Sep 1997</td>
<td>Carmanah Point, sw Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>4, 5</td>
</tr>
<tr>
<td>14 Apr 2001</td>
<td>Tofino, west-central Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>27 Apr 2002</td>
<td>Tofino, west-central Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>12 May 2002</td>
<td>Tofino, west-central Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>30 May 2003</td>
<td>Tofino, west-central Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>17 May 2004</td>
<td>Tofino, west-central Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>9 Jun 2005</td>
<td>West of Cape Flattery, Washington, in</td>
<td>L pod</td>
<td>Whales were exiting the Strait of Juan de Fuca</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Canadian waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Sep 2005</td>
<td>West of Cape Flattery, Washington, in</td>
<td>L pod</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Canadian waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Mar 2006</td>
<td>North of Neah Bay, Washington, in Canadian</td>
<td>J pod</td>
<td>Whales were exiting the Strait of Juan de Fuca</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 May 2006</td>
<td>Off Brooks Peninsula, nw Vancouver Island</td>
<td>L pod</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Apr 1986</td>
<td>Off Westport/Grays Harbor</td>
<td>L pod</td>
<td>-</td>
<td>2, 9</td>
</tr>
<tr>
<td>13 Sep 1989</td>
<td>West of Cape Flattery</td>
<td>L pod</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>17 Mar 1996</td>
<td>3 km offshore Grays Harbor</td>
<td>L pod</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>20 Sep 1996</td>
<td>Off Sand Point (29 km so. of Cape Flattery)</td>
<td>L pod</td>
<td>-</td>
<td>4, 5</td>
</tr>
<tr>
<td>15 Apr 2002</td>
<td>Long Beach</td>
<td>L60</td>
<td>Stranded</td>
<td>11, 12</td>
</tr>
<tr>
<td>11 Mar 2004</td>
<td>Off Grays Harbor</td>
<td>L pod</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>13 Mar 2004</td>
<td>Off Cape Flattery</td>
<td>J pod</td>
<td>Whales were exiting the Strait of Juan de Fuca</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Mar 2005</td>
<td>Fort Canby-North Head</td>
<td>L pod</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>23 Oct 2005</td>
<td>Off Columbia River</td>
<td>K pod</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>29 Oct 2005</td>
<td>Off Columbia River</td>
<td>K and L pods</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>6 Apr 2006</td>
<td>Westport</td>
<td>K and L pods</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Oregon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 1999</td>
<td>Off Depoe Bay</td>
<td>L pod</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>21 Mar 2000</td>
<td>Off Yaquina Bay</td>
<td>L pod</td>
<td>Seen week of March 20</td>
<td>2</td>
</tr>
<tr>
<td>14 Apr 2000</td>
<td>Off Depoe Bay</td>
<td>Southern</td>
<td>Residents</td>
<td>12</td>
</tr>
<tr>
<td>30 Mar 2006</td>
<td>Off Columbia River</td>
<td>K and L pods</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>California</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Jan 2000</td>
<td>Monterey Bay</td>
<td>K and L pods</td>
<td>Feeding on fish (Chinook?)</td>
<td>14, 15</td>
</tr>
<tr>
<td>13 Mar 2003</td>
<td>Monterey Bay</td>
<td>L pod</td>
<td>-</td>
<td>14, 16</td>
</tr>
<tr>
<td>16 Feb 2005</td>
<td>Farallon Islands</td>
<td>L pod</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>26 Jan 2006</td>
<td>Pt. Reyes</td>
<td>L pod</td>
<td>-</td>
<td>17</td>
</tr>
</tbody>
</table>

Pod listings do not imply that the entire pod was present.

Carcass identified by genetic testing.
unidentified Southern Resident (recognized through genetic testing) that was found on the west coast of the Queen Charlottes in June 1995 (Ford et al. 2000) and another dead individual found off Cape Scott at the northwestern tip of Vancouver Island in May 1996 (J. K. B. Ford, pers. comm.). To date, there is no evidence that the Southern Residents travel more than 50 km offshore (Ford et al. 2005b).

Due to extensive changes in distribution and abundance in many salmon stocks along the North American west coast during the past 150 years, it is possible that the current movement patterns of the Southern Residents are somewhat different from those of several centuries ago. In particular, there is speculation that the whales may have once been regularly attracted to the Columbia River mouth or Central Valley, where immense numbers of salmon previously returned during their spawning migrations. Morin et al. (2006) has recently attempted to assess the extent of past movements of these whales to California by examining mitochondrial DNA from specimens collected there from the mid-1800s to 1979. No Southern Residents were found in the sample (i.e., only transient and offshore haplotypes were detected). Although this outcome is not conclusive proof that Southern Residents did not historically visit Californian waters, it does suggest that such movements may have been infrequent or highly seasonal during the past 150 years.

Northern Residents. Despite considerable overlap in their full geographic distributions (Figure 3), Southern and Northern Residents maintain separate ranges during most of the year. Some Northern Resident pods are seen most predictably from June to October in western Johnstone Strait and Queen Charlotte Strait, where occurrence is closely associated with salmon congregating to enter spawning rivers (Morton 1990, Nichol and Shackleton 1996, Ford et al. 2000). However, the majority of animals occur farther north during this season in passages and inlets of the central and northern British Columbia coast, in Hecate Strait and Queen Charlotte Islands, and reaching Frederick Sound in southeastern Alaska (Nichol and Shackleton 1996, Dahlheim et al. 1997, Ford et al. 2000). Less information is available on the winter distribution of Northern Residents, but use of Johnstone Strait and neighboring areas declines markedly during this time (Morton 1990, Nichol and Shackleton 1996). The two communities occur sympatrically at times during the spring, when some Southern Residents visit northern Vancouver Island and the Queen Charlotte Islands (Osborne 1999, Ford et al. 2000). Northern Resident pods have been rarely documented in Washington State at locations as far south as Willipa Bay (Calambokidis et al. 2004, Wiles 2004; D. K. Ellifrit, unpubl. data; J. K. B. Ford, unpubl. data, NWFSC, unpubl. data).

West coast transients. This is the only transient community that overlaps in range with the Southern Residents, being distributed from the Los Angeles area of southern California to the Icy Strait and Glacier Bay region of southeastern Alaska (Figure 4; Ford and Ellis 1999, Baird 2001, Barrett-Lennard and Ellis 2001; N. A. Black, pers. comm.). Transient whales are considered farther ranging and more unpredictable in their daily movements than residents. Detailed information on seasonal movements is not available because of the relatively few identifications made of nearly all individuals. In contrast to the Southern Residents, transient patterns of occurrence show less seasonal change in abundance and distribution, which probably relates to the year-round presence of their marine mammal prey (Ford and Ellis 1999). Based on photo-identification records, some transients are regularly seen in particular sub-regions (e.g., moderately sized areas of British
Columbia and southeastern Alaska), whereas other individuals travel across much of the community’s geographic range (Ford and Ellis 1999). Regional-scale movements are evident in many of the transients identified in British Columbia or Washington, with slightly more than half (111 of 206 animals) having been sighted in southeastern Alaska (Dahlheim et al. 1997, Ford and Ellis 1999). About 13% of the individuals photographed off California have been observed in Washington, British Columbia, or Alaska (Black et al. 1997). Most transient sightings in Washington and around Vancouver Island occur in the summer and early fall, when viewing effort is greatest and harbor seals pup (Morton 1990, Baird and Dill 1995, Olson 1998, Ford and Ellis 1999). Observations in the Georgia Basin and Puget Sound are concentrated around southeastern Vancouver Island, the San Juan Islands, and the southern edge of the Gulf Islands (Olson 1998; K. C. Balcomb, unpubl. data). Several unusual cases of transients remaining for extended periods of time in relatively small areas have been documented, including two different groups that spent 59 days in 2003 and 172 days in 2005 in Hood Canal in Puget Sound (London 2006). Additional information on the movements of this community is summarized in Ford and Ellis (1999) and Wiles (2004).

Offshores. The offshore community is distributed from the area north of Los Angeles in southern California to the eastern Aleutian Islands (Ford and Ellis 1999; M. E. Dahlheim, unpubl. data; N. A. Black, pers. comm.), giving it the largest geographic range of any killer whale community in the northeastern Pacific. However, movements of individual animals are poorly understood due to the small numbers of verified observations. At least 20 of the approximately 200 individuals photographed in Washington, British Columbia, and Alaska have been sighted in California (Black et al. 1997; M. E. Dahlheim, unpubl. data), indicating that some members of the population travel long distances. Such travel patterns may be related to the movements of migratory fish that are possibly eaten (Krahn et al. 2004a). Offshore killer whales primarily inhabit offshore locations, but are also seen in nearshore coastal waters and occasionally in inland waters (see summary in Wiles 2004).

Dispersal among residents and transients. Social dispersal, in which an animal more-or-less permanently departs its natal group to live alone or in association with unrelated individuals while remaining part of the breeding population, has never been recorded in resident killer whales, which maintain highly stable social bonds throughout their lives (Bigg et al. 1990, Baird 2000, Ford et al. 2000). By comparison, such dispersal is believed to occur commonly in transient whales, with juveniles and adults of both sexes participating (Ford and Ellis 1999, Baird 2000, Baird and Whitehead 2000). In doing so, dispersing transients continue to occupy their large natal geographic ranges throughout their lives.

Several instances of young solitary resident killer whales found away from their natal pods have been recorded in Washington and British Columbia (Balcomb 2002), but likely represent orphaned or poorly nurtured individuals that became separated from their pods rather than true examples of dispersal. Animals such as these are believed to usually die rather than reestablish permanent bonds with other resident whales. A73, a one-year old Northern Resident female calf, appeared in Puget Sound in late 2001 or early 2002 far from her expected range and eventually took up residence near Seattle. She remained there until being captured in June 2002, after which she was translocated back to Canadian waters and was successfully reunited with her natal pod in Johnstone Strait (Norberg et al. 2003). A73 has subsequently been seen with her pod in the summers of 2003.
through 2006. This individual suffered from declining health prior to its capture and would have likely died without human intervention. L98, a Southern Resident male, was discovered in Nootka Sound on western Vancouver Island in July 2001 after apparently becoming separated from L pod at about 2 years of age and resided alone there until 2006. L98 engaged in frequent interactions with vessels and float planes, resulting in minor injuries to himself and property damage. One unsuccessful capture attempt was conducted in 2004. DFO and the local Mowachaht / Muchalaht first nations band conducted monitoring programs to educate boaters to stay away from L98. L98 was killed by a tugboat in March 2006.

Habitat Use

Killer whales frequent a variety of marine habitats that are likely sources of adequate prey resources and do not appear to be constrained by water depth, temperature, or salinity (Baird 2000). Although the species occurs widely as a pelagic inhabitant of open ocean, many populations spend large amounts of time in shallow coastal and inland marine waters, foraging even in inter-tidal areas in just a few meters of water. Killer whales tolerate a range of water temperatures, occurring from warm tropical seas to polar regions with ice floes and near-freezing waters. Brackish waters and rivers are also occasionally entered (Scheffer and Slipp 1948, Tomilin 1957). Individual knowledge of productive feeding areas and other special habitats (e.g., beach rubbing sites) is probably an important determinant in the selection of locations visited and is likely a learned tradition passed from one generation to the next (Ford et al. 1998).

Residents. Resident and transient killer whales exhibit somewhat different patterns of habitat use while in protected inland waters, where most observations are made (Heimlich-Boran 1988, Morton 1990, Felleman et al. 1991, Baird and Dill 1995, Matkin and Saulitis 1997, Scheel et al. 2001). Residents generally spend more time in deeper water and only occasionally enter water less than 5 m deep (Heimlich-Boran 1988, Baird 2000, 2001, Hauser 2006). Distribution is strongly associated with areas of greater salmon abundance (Heimlich-Boran 1986a, 1988, Felleman et al. 1991, Nichol and Shackleton 1996), but research to date has yielded conflicting information on preferred foraging habitats. Several studies have reported that Southern Residents feed heavily in areas characterized by high-relief underwater topography, such as subsurface canyons, seamounts, ridges, and steep slopes (Heimlich-Boran 1988, Felleman et al. 1991). Such features may concentrate prey, thereby resulting in greater prey availability, and be used by the whales as underwater barriers to assist in herding fish (Heimlich-Boran 1988). The primary prey at greater depths may be Chinook salmon, which swim at depths averaging 25-80 m and extending down to 300-400 m (Candy and Quinn 1999). Other salmonids mostly inhabit the upper 30 m of the water column (Quinn and terHart 1987, Quinn et al. 1989, Ruggerone et al. 1990, Ishida et al. 2001). Hauser (2006) also reported an overall tendency for the Southern Residents to occur in areas of steeper topography.

In contrast, Hoelzel (1993) reported no correlation between the feeding behavior of residents and bottom topography, and found that most foraging took place over deep open water (41% of sightings), shallow slopes (32%), and deep slopes (19%). Ford et al. (1998) described residents as frequently foraging within 50-100 m of shore and using steep nearshore topography to corral fish. Both of these studies, plus those of Baird et al. (2003, 2005), have reported that most feeding and diving activity occurs in the upper 30 m of the water column, where most salmon are distributed.
(Stasko et al. 1976, Quinn and terHart 1987, Quinn et al. 1989, Ruggerone et al. 1990, Olson and Quinn 1993, Nichol and Shackleton 1996, Candy and Quinn 1999, Baird 2000). Additionally, Chinook salmon occupy nearshore habitats more so than other salmonids (Stasko et al. 1976, Quinn et al. 1989). Reasons for the discrepancies between studies are unclear, but may result from interpod variation and differences in study methodology (Nichol and Shackleton 1996, Baird 2001). Baird et al. (2005) have recently reported a shift to shallower daytime depths among Southern Residents between 1993 and 2002, which possibly reflects long-term changes in prey behavior or selection of prey. Other behaviors, such as resting and socializing, are performed in open water with varied bathymetry (Heimlich-Boran 1988, Felleman et al. 1991).

Habitat use patterns for Southern Resident pods visiting the outer coast are virtually unknown. Sightings of Southern Residents off the coast of Washington, Oregon, and California indicate that they are utilizing resources in the California Current ecosystem in contrast to other North Pacific resident pods that exclusively use resources in the Alaskan Gyre system.

Habitat use may be affected by anthropogenic factors such as sound. A study in British Columbia documented a change in habitat use of killer whales in response to installation of acoustic harassment devices (AHDs) at fish farms (Morton and Symonds 2002). Both residents and transients were sighted less frequently in one area while AHDs were in use, while in a similar area in the region where AHDs were absent, killer whale presence remained relatively stable during the same time period. Morton and Symonds (2002) noted that long-term displacement of whales by sound sources is difficult to document and the exact mechanism by which sound can displace marine mammals is poorly understood.

Transients. Transient whales also occupy a wide range of water depths, including deep areas exceeding 300 m. However, transients show greater variability in habitat use than residents, with some groups spending most of their time foraging in shallow waters close to shore and others hunting almost entirely in open water (Heimlich-Boran 1988, Felleman et al. 1991, Baird and Dill 1995, Matkin and Saulitis 1997). Small bays and narrow passages are entered, in contrast to residents (Morton 1990, Scheel et al. 2001). Groups using nearshore habitats often concentrate their activity in shallow waters near pinniped haul-out sites. While foraging, these whales often closely follow the shoreline, entering small bays and narrow passages, circling small islets and rocks, and exploring inter-tidal areas at high tides. Transients that spend more time in open water probably prey more frequently on porpoises as well as pinnipeds.

Occurrence along outer coastlines. Abundance patterns of killer whales are poorly known for many outer coastal areas of western North America. Several studies off Washington and Oregon have reported relatively low encounter rates during shipborne and aerial surveys, with most sightings made along the continental shelf within about 50 km of land (Green et al. 1992, 1993, Shelden et al. 2000). Very few observations during these studies were identifiable to community type. Killer whales were encountered somewhat more often during another study by Calambokidis et al. (2004), who conducted summer ship surveys off the Olympic Peninsula from 1995-2002. These researchers detected transient whales most frequently, but members of the Southern and Northern Resident and offshore communities were also observed. Sightings were made predominantly at mid-shelf depths averaging 100-200 m and at distances of 40-80 km from land.
Killer whales were also occasionally observed during another series of shipboard transects conducted off California, Oregon, and Washington from 1991-2001, although community type was again not determined (Barlow 2003, Carretta et al. 2004).

Use of rivers. Killer whales in the northeastern Pacific occasionally enter the lower reaches of rivers while foraging. Use of the lower Fraser River by resident killer whales has been reported (Baird 2001, pers. comm.) and may have involved animals in pursuit of salmon. Transients have been recently recorded in several rivers or river mouths in Oregon (K. C. Balcomb, unpubl. data). Several instances of whales ascending up to 180 km up the Columbia River are known from the 1930s and 1940s (Shepard 1932, Scheffer and Slipp 1948), but it is not known whether these animals were resident or transient whales.

Critical habitat under the ESA. The ESA requires that NOAA and the U.S. Fish and Wildlife Service designate critical habitat for species that have been listed as threatened or endangered. In so doing, the agencies must use the best scientific information available, in an open public process, within specific timeframes. The ESA defines critical habitat as specific areas: 1) within the geographical area occupied by the species at the time of listing, if they contain physical or biological features essential to conservation, and those features may require special management considerations or protection; and 2) outside the geographical area occupied by the species if the agency determines that the area itself is essential for conservation. Before designating critical habitat, careful consideration must be given to the economic impacts, impacts on national security, and other relevant impacts of specifying any particular area as critical habitat. The Secretary of Commerce may exclude an area from critical habitat if the benefits of exclusion outweigh the benefits of designation, unless excluding the area will result in the extinction of the species concerned.

NMFS recently designated critical habitat for Southern Resident killer whales. The designated area -- just over 2,500 square miles -- encompasses parts of Haro Strait and the U.S. waters around the San Juan Islands, the Strait of Juan de Fuca and all of Puget Sound (Figure 7). In June 2006, NMFS proposed critical habitat for Southern Resident killer whales (NMFS 2006a, 71 FR 34571). We held public meetings, reviewed all comments and new information provided by the public and other reviewers, and incorporated minor revisions into the final designation.

Based on the natural history of the Southern Residents and their habitat needs, we identified the following physical or biological features essential to conservation: (1) Water quality to support growth and development; (2) Prey species of sufficient quantity, quality and availability to support individual growth, reproduction and development, as well as overall population growth; and (3) Passage conditions to allow for migration, resting, and foraging. From the sightings and other data, we identified three "specific areas," within the geographical area occupied by the species, containing these features. We considered presence and movements of the whales, behavioral observations and studies, and other information to verify that one or more of the physical or biological features can be found in these three areas. We designated three specific areas, (1) the Summer Core Area in Haro Strait and waters around the San Juan Islands; (2) Puget Sound; and (3) the Strait of Juan de Fuca, which comprise approximately 2,560 square miles of marine habitat within the area occupied by Southern Resident killer whales in Washington (Figure 7). We did not
have sufficient information to consider Hood Canal as occupied at the time of listing. Critical habitat includes all waters relative to a contiguous shoreline delimited by the line at a depth of 20 feet relative to extreme high water. Some of these areas overlap with military sites, which are not designated as critical habitat because they were determined to have national security impacts that outweigh the benefit of designation and were therefore excluded under ESA section 4(b)(2). We concluded that exclusion of these areas would not result in extinction of the Southern Residents. We determined that the economic benefits of exclusion of any of the areas did not outweigh the benefits of designation, and we therefore did not exclude any areas based on economic impacts. We did not designate coastal or offshore areas, though we do recognize that they are important for the Southern Resident killer whales and anticipate additional information on coastal habitat use from research projects in the coming years.

Figure 7. Designated critical habitat for Southern Resident killer whales.
Reproduction and Growth

Much of the information on reproduction and growth in killer whales comes either from observations of animals held in captivity or from long-term photo-identification studies of the resident whale communities in Washington, British Columbia, and Alaska (Olesiuk et al. 1990a, 2005, Matkin et al. 2003). Variation in these parameters can be expected in other populations (Ford 2002).

Mating system. Killer whales are polygamous (Dahlheim and Heyning 1999). Paternity analyses using microsatellite DNA indicate that resident males nearly always mate with females outside of their own pods, thereby reducing the risks of inbreeding (Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001). Differences in dialects very likely assist animals in determining the degree of relatedness among prospective mating partners, with female choice probably being the major factor in the mating success of males (Ford 1989, 1991, Ford et al. 2000, Yurk et al. 2002). Only physically mature males are known to sire claves (Olesiuk et al. 2005).

Mating season and estrous activity. Most mating in the North Pacific is believed to occur from April to October (Nishiwaki 1972, Olesiuk et al. 1990a, 2005, Matkin et al. 1997). However, small numbers of conceptions apparently happen year-round, as evidenced by births of calves in all months.

Captive adult females experience periods of multiple estrous cycling interspersed with intervals of non-cycling (Walker et al. 1988, Robeck et al. 1993, 2005, Duffield et al. 1995). The lengths of these periods are highly variable, both within an individual and a population. Estrous cycle lengths average 41-44 days (range = 18-91 days), with a mean of four cycles (range = 1-12 cycles) during polyestrous. Non-cycling intervals last an average of 7-8 months (range = 3-16 months) (Robeck et al. 1993, Duffield et al. 1995). Profiles of reproductive hormones during ovarian cycles and pregnancy in captive females are presented by Walker et al. (1988), Duffield et al. (1995), and Robeck et al. (2005).

Calving interval. Estimates of calving intervals, defined as the length of time between the births of surviving calves, average from 4.9 to 7.7 years (range = 2-14 years) in resident killer whales (Olesiuk et al. 1990a, 2005, Krahn et al. 2002, 2004a, Matkin et al. 2003) and range from 3.0-8.3 years for other populations in the North Atlantic and Antarctica (Christensen 1984, Perrin and Reilly 1984). Females in captivity have produced calves 2.7-4.8 years apart (Duffield et al. 1995). Some females may become pregnant again relatively soon after the loss of a calf. Hoyt (1990) cited a captive female that gave birth 19 months after the death of her previous newborn calf and Olesiuk et al. (2005) noted three Northern Resident females that lost calves and were seen with new calves two summers later. Jacobsen (1986) observed copulation in a wild female that had given birth to and then lost a calf the previous year. Calving interval does not appear to be affected by a female’s age (Olesiuk et al. 2005). Several authors have suggested that birth rates in some populations may be density dependent (Fowler 1984, Kasuya and Marsh 1984, Brault and Caswell 1993, Dahlheim and Heyning 1999). However, no study has confirmed this trait among resident whales in the northeastern Pacific (Taylor and Plater 2001 Olesiuk et al. 2005). Olesiuk et al. (1990a) reported
mean annual pregnancy rates of 52.8% for resident females of reproductive age and 35.4% for all mature resident females in Washington and British Columbia.

Gestation period. Gestation periods in captive killer whales average about 17 months (mean ± SD = 521 ± 20 days, range = 468-554 days) (Asper et al. 1988, Walker et al. 1988, Duffield et al. 1995, Robeck et al. 2005). Fetal development and morphology have been described in several studies (Turner 1872, Guldberg and Nansen 1894, Benirschke and Cornell 1987).

Calving season and characteristics of newborns. In resident killer whales, births occur largely from September to December (and probably extending through the winter), but can take place during any month (Olesiuk et al. 2005). Parturition dates are thought to be mainly from November to February in the North Atlantic (Jonsgård and Lyshoel 1970, Evans 1988) and from January to April in the Antarctic, which corresponds there to the late austral summer (Anderson 1982). Only single calves are born. Several previous reports of twins (e.g., Olesiuk et al. 1990a, Baird 2000) have proven erroneous (Ford and Ellis 1999). Nearly all calves are born tail-first (Duffield et al. 1995). Newborns measure 2.2-2.7 m long and weigh about 200 kg (Nishiwaki and Handa 1958, Olesiuk et al. 1990a, Clark et al. 2000, Ford 2002). Heyning (1988) reported a mean length of 2.36 m in northeastern Pacific calves. Sex ratios at birth are probably 1:1 (Dahlheim and Heyning 1999). Taylor and Plater (2001) reported a sex ratio of 57% males among 65 Southern Resident calves born after 1973, but this did not differ significantly from a 1:1 sex ratio.

Development and growth of young. Calves remain close to their mothers during their first year of life, often swimming slightly behind and to the side of the mother’s dorsal fin. Weaning age remains unknown, but nursing probably ends at 1-2 years of age (Haenel 1986, Asper et al. 1988, Kastelein et al. 2003). Tooth eruption begins from several to 11 weeks of age, which is about the time that calves begin taking solid food from their mothers (Haenel 1986, Asper et al. 1988, Heyning 1988, Kastelein et al. 2003). Asper et al. (1988) reported a captive calf that consumed 6.6 kg of fish per day at 5 months of age and 22 kg per day of fish and squid at 15 months of age. Another captive animal increased its food consumption from about 22 kg per day at one year of age to about 45 kg at 10 years of age (Kastelein and Vaughan 1989). As young killer whales grow older, they spend increasing amounts of time with siblings and other pod members (Haenel 1986). Juveniles are especially active and curious. They regularly join subgroups of several other youngsters and participate in chasing, leaping, and high-speed porpoising. Young males of 2-6 years of age also engage in displays of sexual behavior. Among resident whales, maternal associations slowly weaken as juveniles reach adolescence (Haenel 1986), but typically continue well into adulthood.

Studies to date have yielded somewhat contradictory information on growth patterns of killer whales, which may partially reflect population differences and whether or not the animals were wild or captive. Christensen (1984) indicated that males and females displayed similar growth rates up to about 15 years of age, but Clark et al. (2000) found that males had lower growth rates than females during the ages of one to six. Several studies have reported linear growth rates during the first nine to 12 years for females and first 12 to 16 years in males, after which growth slows in both sexes (Bigg 1982, Duffield and Miller 1988). Annual growth rates for captive juveniles originating from the northeastern Pacific averaged 38 cm per year (range = 26-52 cm per year), but fell into two
categories for animals from the North Atlantic, averaging 21 cm per year (range = 17-25 cm per year) in one group and 39 cm per year (range = 31-48 cm per year) in a second group (Duffield and Miller 1988). For youngsters one to six years of age, Clark et al. (2000) reported mean growth rates of 28 cm and 182 kg per year for males and 36 cm and 248 kg per year for females. Based on whaling data, Christensen (1984) suggested that male killer whales enter a period of sudden growth during adolescence. The validity of this finding has been questioned (Duffield and Miller 1988, Baird 2000), but measurements taken by Clark and Odell (1999) support Christensen’s (1984) hypothesis. Both sexes continue to grow until physical maturity is reached at about 16-25 years of age (Christensen 1984, Kastelein et al. 2000 Olesiuk et al. 2005). Bigg and Wolman (1975) calculated the relationship between body length and weight in both sexes of killer whale as being: weight = 0.000208 length^{2.577} (weight in kg, length in cm). Kastelein et al. (2003) noted a similar growth pattern among captive animals. New research techniques, such as laser-metrics, have been used to measure dorsal fin size, which may assist with assessing physical maturity (Durban and Parsons 2006). This technique may also be used in the future to make additional body size estimates and assess growth of free-swimming killer whales.

Characteristics of reproductive adults. Females achieve sexual maturity at lengths of 4.6-5.4 m, depending on geographical region (Perrin and Reilly 1984). Sexual maturity, when reproduction is physiologically possible, generally occurs two to three years before reproductive maturity, when reproduction occurs with the greatest chance of conception and birth of healthy calves. Most wild females from the northeastern Pacific give birth to their first surviving calf between the ages of 12 and 17 years (mean = about 14.9 years, range = 10-22 years) (Olesiuk et al. 1990a, 2005, Matkin et al. 2003), but when adjusted for the high mortality rate among newborns, the probable mean age at first birth of either a viable or non-viable calf is reduced to about 13 years (Olesiuk et al. 1990a). This latter age corresponds to a probable mean age at first conception of 11.6 years. Pubescent females may ovulate several times before conceiving, thus average age at first ovulation is probably even younger (Olesiuk et al. 1990a). Duffield et al. (1995) reported similar ages for initial births among captive females from this region, but noted a captive-born female that gave birth when 8 years old. Somewhat younger ages of 7-14 years have been reported for North Atlantic females becoming sexually mature or bearing their first calf (Christensen 1984, Duffield et al. 1995, Kastelein et al. 2003). Resident females have a mean reproductive potential of about 4.5-5.7 calves during a reproductive life span lasting about 24-20 years and produce an average of 2.2-4.1 surviving calves (Olesiuk et al. 1990a, 2005, Matkin et al. 2003). Breeding in resident females typically lasts until about 38-45 years of age, but can end anywhere from about 22-53 years of age (Olesiuk et al. 1990a, 2005, Matkin et al. 2003). Females then enter a post-reproductive period that continues until their death. This averages about 10 years in length, but extends more than 30 years in a few individuals.

Males become sexually mature at body lengths ranging from 5.2-6.4 m (Christensen 1984, Perrin and Reilly 1984, Duffield and Miller 1988, Olesiuk et al. 1990a). Male Northern Residents usually begin to show enlarged or “sprouting” dorsal fins, which are a sign of the onset of sexual maturity, at 11-15 years of age (mean = 12.9, range = 9-18 years; Olesiuk et al. 2005). The sprouting phase typically lasts 5-6 years (mean = 5.5 years; range = 3-7 years). Males are presumed to remain sexually active throughout their adult lives (see Olesiuk et al. 1990a).
Survival, Longevity, and Natural Mortality

Survival. Population demography in the species is best understood for resident killer whales (Olesiuk et al. 1990a, 2005, Krahn et al. 2002, 2004a, Matkin et al. 2003). Mortality curves are U-shaped for both sexes, although the curve is narrower for males (Olesiuk et al. 1990a, 2005, Matkin et al. 2003). Mortality is quite high during the first six months of life, when 37-50% of all calves die (Bain 1990, Olesiuk et al. 1990a) although this may be an overestimate (Olesiuk et al. 2005). Annual death rates among Northern Resident juveniles usually decline steadily thereafter, falling to 0.6-2.3% for both sexes from 10.5 to 14.5 years of age (Olesiuk et al. 2005). However, during a period of no population growth, Olesiuk et al. (2005) noted a spike in mortality occurring among juveniles in the 3.5-5.5 year age class, which corresponded to the period when their mothers gave birth to their next calf. An estimated 61-82% of viable calves reach maturity, depending on prevailing environmental conditions. Death rates remain low among females of reproductive age, averaging just 0-2.5% per year for various age classes between 15.5 and 44.5 years (Olesiuk et al. 1990a, 2005). Overall, 41-75% of females survive to the end of their reproductive lifespan at about 40 years of age. Mortality increases dramatically to 4.7-6.8% annually among older females, especially those beyond 50 years of age. After reaching sexual maturity, death rates for males increase throughout life, up to 18.3% annually among Northern Resident individuals older than 30 years (Olesiuk et al. 2005). Life history tables for northern and Southern Resident populations are presented in Olesiuk et al. (1990a, 2005). Fairly similar survival patterns have been reported among the Southern Alaska Residents (Matkin et al. 2003).

Seasonal mortality rates among Southern and Northern Resident whales have not been analyzed, but are believed to be highest during the winter and early spring, based on the numbers of animals missing from pods returning to inland waters each spring (J. K. B. Ford, pers. comm.; K. C. Balcomb, pers. comm.). This contention is supported by the higher winter and spring stranding rates reported for all killer whale forms in Washington and Oregon (Table 3; Norman et al. 2004). Olesiuk et al. (2005) also identified high neonate mortality that occurred outside of the summer field research seasons. They reported that at least 12 newborn calves (9 in southern community and 3 in northern community) were seen outside the summer field season and disappeared by the next field season.

Comparable data for transients and offshores are not available because of the difficulty in closely monitoring their populations, but death rates in transients are perhaps similar to those of residents (Ford and Ellis 1999). Rates of mortality for killer whales held in captivity are 6.2-8.9% per year (DeMaster and Drevenak 1988, Duffield and Miller 1988, Small and DeMaster 1995).

Longevity. At birth, the average life expectancy of Southern and Northern Resident killer whales is about 29 years for females and 17 years for males (Olesiuk et al. 1990a). However, for Northern Residents that survive their first six months, mean life expectancy increases to about 30-46 years for females and 19-31 years for males (Olesiuk et al. 2005). Life expectancy at sexual maturity (about 15 years of age in both sexes) averages about 31-41 years for females and 13-22 years for males. Maximum life span in both communities is estimated to be 80-90 years for females and 60-70 years for males (Olesiuk et al. 1990a, 2005). Reasons for the shorter longevity of males are unknown, but are probably linked to sexual selection (Baird 2000). Among Southern Alaska Residents, females
reaching 6 months of age have a shorter life expectancy of 39 years and a maximum life span of 60-70 years (Matkin et al. 2003).

Natural mortality. Natural causes of death in killer whales remain largely unidentified, even in the well-investigated Southern and Northern Resident populations. Animals usually sink after dying, giving researchers little opportunity to conduct post-mortem examinations of carcasses. Thus, reasons for the high mortality rates among calves are not known (Baird 2000). Killer whales have no predators other than humans (Baird 2000, Ford 2002). Field observations and the lack of shark-induced scars, such as those seen on some dolphin species (Corkeron et al. 1987, Heithaus 2001), suggest that shark predation is insignificant even on young animals (Baird 2000). Visible signs of emaciation are rarely seen among resident and transient whales in Washington and British Columbia (K. C. Balcomb, pers. comm.; J. K. B. Ford, pers. comm.; R. W. Baird, pers. comm.), thus it is unknown whether these populations experience annual periods of food scarcity that might contribute to increased mortality.

Individual and mass live strandings and entrapments of killer whales are considered rare (Dahlheim and Heyning 1999) and often end in the deaths of some or most animals. These events sometimes result when whales foraging in shallow waters become accidentally trapped by a receding tide, but fast-forming ice can also be a cause (Taylor 1957, Mitchell and Reeves 1988, Reeves et al. 2002). Disease, parasitism, and intense human-generated sound may also drive animals ashore in some cases (Walsh et al. 2001, Perrin and Geraci 2002). Fewer than 20 records of mass strandings are known worldwide, but four of these occurred in British Columbia during the 1940s (Pike and MacAskie 1969, Mitchell and Reeves 1988; M. Sternfeld, unpubl. data). These included 11 whales stranded near Masset in the Queen Charlotte Islands in January 1941 (Cameron 1941), “a number” of whales temporarily stranded at Cherry Point near Cowichan Bay, Vancouver Island, in September 1944 (Carl 1946), and 20 whales stranded near Estevan Point on western Vancouver Island in June 1945 (Carl 1946). Pike and MacAskie (1969) described five entrapped whales that eventually stranded and died in Von Donnop Lagoon on Cortez Island near Campbell River, Vancouver Island, in March 1949. Seven strandings or entrapments involving three or more whales have occurred in Alaska since 1982 (Lowry et al. 1987, Heise et al. 2003, Shelden et al. 2003; M. B. Hanson, unpubl. data; M. Sternfeld, unpubl. data) and are the only other records reported from western North America (Mitchell and Reeves 1988, Norman et al. 2004; J. Gaydos, unpubl. data; N. A. Black, pers. comm.). These involved a mean of 5.6 animals, with the largest event comprised of nine offshore whales trapped in Barnes Lake on Prince of Wales Island for about two months in 1994 (D. E. Bain, unpubl. data). Two of the animals died before the remainder were driven back to the ocean by rescuers.

The NMFS National Marine Mammal Stranding Database contains records of 20 individual stranded killer whales in Washington and Oregon since 1930 (Table 3; Norman et al. 2004). Fifteen (75%) strandings occurred in the winter or spring, and eleven (55%) were newborns or young calves. The number of calf strandings may indicate that this age class is especially vulnerable to disease and separation from the pod. Seven of the 20 (35%) were confirmed as or suspected to be Southern Residents. Additional stranded Southern Residents have been identified in Canada (Osborne 1999). Three stranded whales in Oregon were confirmed as transients (Stevens et al. 1989, Northwest Marine Mammal Stranding Network) as well as two adults (CA188 and CA189).

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Sex¹</th>
<th>Population ²</th>
<th>Length (cm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 1970</td>
<td>Port Madison, Wash.</td>
<td>F</td>
<td>SR d</td>
<td>280</td>
<td>Live, captured for aquaria display</td>
</tr>
<tr>
<td>Mar 1973</td>
<td>Ocean City, Wash.</td>
<td>F</td>
<td>SR d</td>
<td>488</td>
<td>Live, captured for aquaria display</td>
</tr>
<tr>
<td>28 Sep 1977</td>
<td>San Juan Island, Wa.</td>
<td>M</td>
<td>SR (L pod)</td>
<td>621</td>
<td>Dead, contaminant levels reported in Calambokidis et al. (1984)</td>
</tr>
<tr>
<td>15 Nov 1983</td>
<td>Seattle, Wash.</td>
<td>F</td>
<td>SR (J or K pod)</td>
<td>218</td>
<td>Newborn</td>
</tr>
<tr>
<td>7 Mar 1987</td>
<td>Fort Stevens, Ore.</td>
<td>M</td>
<td>WCT</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>8 Feb 1988</td>
<td>Pacific City, Ore.</td>
<td>M</td>
<td>WCT d</td>
<td>385</td>
<td>Contaminant levels reported in Hayteas and Duffield (2000)</td>
</tr>
<tr>
<td>5 Jan 1989</td>
<td>Stuart Island, Wash.</td>
<td>M</td>
<td>SR (J pod)</td>
<td>230</td>
<td>Dead, newborn, contaminant levels reported in Jarman et al. (1996)</td>
</tr>
<tr>
<td>8 Apr 1989</td>
<td>Cape Flattery, Wash.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dead</td>
</tr>
<tr>
<td>24 Jul 1993</td>
<td>Seal Rock, Ore.</td>
<td>M</td>
<td>U</td>
<td>235</td>
<td>Dead, contaminant levels reported in Hayteas and Duffield (2000)</td>
</tr>
<tr>
<td>13 May 1995</td>
<td>Newport, Ore.</td>
<td>F</td>
<td>U</td>
<td>212</td>
<td>Dead, newborn, contaminant levels reported in Hayteas and Duffield (2000)</td>
</tr>
<tr>
<td>12 Apr 1996</td>
<td>Netarts, Ore.</td>
<td>F</td>
<td>U</td>
<td>622</td>
<td>Dead, contaminant levels reported in Hayteas and Duffield (2000)</td>
</tr>
<tr>
<td>21 Apr 1997</td>
<td>Tillamook, Ore.</td>
<td>M</td>
<td>U</td>
<td>256</td>
<td>Dead, contaminant levels reported in Hayteas and Duffield (2000)</td>
</tr>
<tr>
<td>20 Nov 1997</td>
<td>Gearhart, Ore.</td>
<td>-</td>
<td>U</td>
<td>180</td>
<td>Dead, length may be incorrect</td>
</tr>
<tr>
<td>9 Jan 1998</td>
<td>Pacific City, Ore.</td>
<td>-</td>
<td>U</td>
<td>120</td>
<td>Dead, length may be incorrect</td>
</tr>
<tr>
<td>8 Feb 1999</td>
<td>Greenbank, Wash.</td>
<td>M</td>
<td>SR (J pod)</td>
<td>220</td>
<td>Dead, newborn</td>
</tr>
<tr>
<td>1 May 2000</td>
<td>Winchester Bay, Ore.</td>
<td>M</td>
<td>WCT</td>
<td>270</td>
<td>Dead</td>
</tr>
<tr>
<td>2 Jan 2002</td>
<td>Dungeness Bay, Wa.</td>
<td>M</td>
<td>WCT (CA188)</td>
<td>700</td>
<td>Live, successfully rescued and returned to water</td>
</tr>
<tr>
<td>2 Jan 2002</td>
<td>Dungeness River, Wa.</td>
<td>F</td>
<td>WCT (CA189)</td>
<td>671</td>
<td>Dead</td>
</tr>
<tr>
<td>14 Apr 2002</td>
<td>Long Beach, Wash.</td>
<td>F</td>
<td>SR (L60)</td>
<td>606</td>
<td>Dead, held high contaminant levels</td>
</tr>
<tr>
<td>3 May 2004</td>
<td>Bandon, Ore.</td>
<td>F</td>
<td>WCT</td>
<td>650</td>
<td>Alive, but died soon after</td>
</tr>
</tbody>
</table>

³ Osborne (1999) reported two additional strandings of individual whales from Lummi Island, Washington (14 Aug 1981, 580 cm long), and Clallam Bay, Washington (26 May 1991, newborn). The National Marine Fisheries Service was listed as the source of these records, but neither appears in the database of the Northwest Marine Mammal Stranding Network. Osborne (1999) did not list the population or sex of either animal.

² M, male; and F, female.

³ SR, Southern Resident; NR, Northern Resident, WCT, west coast transient; and U, not identified. Identity of pod or individual whale is listed in parentheses when known.

⁴ Identified as a West Coast Transient by Stevens et al. (1989).

stranded near Dungeness Bay and by the mouth of the Dungeness River in Washington in January 2002 were also transients. Members of the Northwest Marine Mammal Stranding Network with the assistance of other killer whale experts were able to rescue the live-stranded whale at Dungeness Bay, moving the animal out of the bay to the north of Dungeness Spit allowing it swim into open water. Several older stranding records are also known from Washington. Scheffer and Slipp (1948)
described two entrapments involving single whales in Puget Sound, including one animal caught behind a dock. Both escaped on the next incoming tide.

Diseases. Cause of death has been reported for some killer whales held in captivity, but may not be representative of mortality in the wild. Deaths of 32 captive individuals were attributed to pneumonia (25%), systemic mycosis (22%), other bacterial infections (16%), mediastinal abscesses (9%), and undiagnosed causes (28%) (Greenwood and Taylor 1985). Little is known about infectious diseases of wild killer whales or the threat that they pose to populations. Sixteen pathogens have been identified from captive and free-ranging animals, including nine types of bacteria, four viruses, and three fungi (Gaydos et al. 2004). Three of these, marine *Brucella*, *Edwardsiella tarda*, and cetacean poxvirus, were detected in wild individuals. Marine *Brucella* and cetacean poxvirus have the potential to cause mortality in calves and marine *Brucella* may cause abortion (Miller et al. 1999, Van Bressem et al. 1999). Cetacean poxvirus also produces skin lesions, but probably does not cause many deaths in cetaceans (Van Bressem et al. 1999).

Antibodies to *Brucella* spp. were detected in a female transient that stranded near the Dungeness River mouth in January 2002 (Gaydos et al. 2004). In 2000, a male Southern Resident died from a severe infection caused by *E. tarda* (Ford et al. 2000). An additional 28 pathogens (12 fungi, 12 bacteria, and four viruses) have been identified from other species of toothed whales that are sympatric with the Southern Residents and are considered potentially transmittable to killer whales (Palmer et al. 1991, Gaydos et al. 2004). Several, including porpoise morbillivirus, dolphin morbillivirus, and herpesviruses, are highly virulent and are capable of causing large-scale disease outbreaks in some related species. Disease epidemics have never been reported in killer whales in the northeastern Pacific (Gaydos et al. 2004).

Killer whales are susceptible to other forms of disease, including Hodgkin’s disease and severe atherosclerosis of the coronary arteries (Roberts et al. 1965, Yonezawa et al. 1989). Tumors and bone fusion have also been recorded (Tomilin 1957). Jaw abscesses and dental disease are common problems caused by heavy tooth wear down to the gum line, resulting in exposure and infection of the pulp cavity and surrounding tissue (Carl 1946, Tomilin 1957, Caldwell and Brown 1964). Noticeable tooth wear can occur even in some younger animals (Carl 1946). Captive animals commonly suffer from abscessed vestigial hair follicles on the rostrum, a condition that can eventually spread over the entire skin surface (Simpson and Gardner 1972). A genetic disorder known as Chediak-Higashi syndrome was diagnosed in a young transient killer whale from southern Vancouver Island in the early 1970s (Haley 1973, Taylor and Farrell 1973, Hoyt 1990, Ford and Ellis 1999). The syndrome causes partial albinism, susceptibility to infections, and a reduction in life span.

The collapsed dorsal fins commonly seen in captive killer whales (Hoyt 1992) do not result from a pathogenic condition, but are instead thought to most likely originate from an irreversible structural change in the fin’s collagen over time (B. Hanson, pers. comm.). Possible explanations for this include (1) alterations in water balance caused by the stresses of captivity or dietary changes, (2) lowered blood pressure due to reduced activity patterns, or (3) overheating of the collagen brought on by greater exposure of the fin to the ambient air. Collapsed or collapsing dorsal fins are rare in most wild populations (Hoyt 1992, Ford et al. 1994, Visser 1998, Ford and Ellis 1999) and usually result from a serious injury to the fin, such as from being shot or colliding with a vessel. Matkin
and Saulitis (1997) reported that the dorsal fins of two male resident whales in Alaska began to fold soon after their pod’s exposure to oil during the Exxon Valdez spill in 1989 and were completely flattened within two years. Both animals were suspected to be in poor health and subsequently died. The dorsal fin of a male transient stranded at Dungeness Bay, Washington, in 2002 showed signs of collapse after three days, but regained its natural upright appearance as soon as the whale resumed strong normal swimming upon release (J. P. Schroeder, pers. obs.).

Parasites. Relatively little information is available on the parasites of killer whales. Known endoparasites include *Campula* sp., *Fasciola skrjabini*, *Leucasiella subtilla*, and *Oschmarinella albamarina* (Trematoda), *Diphyllobothrium polyrugosum*, *Phyllobothrium* sp., and *Trigonocotyle spasskvi* (Cestoda), *Anisakis pacificus* and *A. simplex* (Nematoda), *Bolbosoma nipponicum* and *B. physeteris* (Acanthocephala), *Kyaroikeus cetarius* (Ciliata), and *Toxoplasma gondii* (Apicomplexa) (Dailey and Brownell 1972, Heptner et al. 1976, Heyning 1988, Sniezek et al. 1995, Gibson and Bray 1997, Gibson et al. 1998, Murata et al. 2004). These are transmitted primarily through the ingestion of infected prey (Baird 2000). An estimated 5,000 unidentified nematodes were reported in the stomach of a resident whale from Washington (Scheffer and Slipp 1948). The forestomach of a calf estimated at 1-2 months of age in California contained numerous *Anisakis simplex* worms, indicating that infections can begin at an early age (Heyning 1988). Increased vigor and appetite were observed in the orphaned Northern Resident killer whale calf A73 following treatment for intestinal parasites during rehabilitation. Ectoparasites are infrequently found and include the whale lice *Cyamus orcini*, *C. antarcticensis*, and *Isocyamus delphinii* (Amphipoda) (Leung 1970, Berzin and Vlasova 1982, Wardle et al. 2000). Most external parasites are probably transmitted through body contact with other individuals, such as during social encounters and mother-young interactions (Baird 2000). No severe parasitic infestations have been reported in killer whales in the northeastern Pacific.

Commensal organisms associating with killer whales include barnacles, remoras, and diatoms (Hart 1935, Nemoto et al. 1980, Fertl and Landry 1999, Guerrero-Ruiz and Urbán 2000). Barnacles are rare in most populations (Samaras 1989, Dahlheim and Heyning 1999), but are present on many Mexican killer whales (Guerrero-Ruiz 1997, Black et al. 1997).

Human-Related Sources of Mortality and Live-Captures

Commercial exploitation. The first records of commercial hunting of killer whales date back to the 1700s in Japan (Ohsumi 1975). During the 19th and early 20th centuries, the global whaling industry harvested immense numbers of baleen and sperm whales, but largely ignored killer whales because of their limited amounts of recoverable oil, their smaller populations, and the difficulty that whalers had in capturing them (Scammon 1874, Scheffer and Slipp 1948, Budker 1958, Reeves and Mitchell 1988a). No killer whales were reported among the nearly 25,000 whales processed by coastal whaling stations in British Columbia from 1908-1967 (Gregr et al. 2000). Similarly, none were among the 2,698 whales handled at the Bay City whaling plant in Grays Harbor, Washington, during its 14 years of operation from 1911-1925 (Scheffer and Slipp 1948, Crowell 1983).

From the 1920s to 1940s, small whaling fisheries were developed or became more sophisticated in several countries, primarily Norway, the Soviet Union, and Japan, resulting in greater hunting.
pressure on smaller whales, dolphins, and killer whales (Jonsgård and Lyshoel 1970, Mitchell 1975, Ohsumi 1975, Øien 1988). Available harvest statistics indicate that each of these countries killed an average of about 43-56 killer whales annually from the 1940s to 1981, with most animals taken from the North Atlantic (total = 2,435 whales), Antarctic and southern oceans (1,681 whales), Japanese coastal waters (1,534 whales), and Soviet far east (301 whales) (Ohsumi 1975, Øien 1988, Hoyt 1990). It should be noted that some of the official harvest data from this era are erroneous, with both under-reporting and over-reporting known or suspected to have occurred (Brownell and Yablokov 2002). Furthermore, catch data would likely exclude any wounded animals that escaped and eventually died. These harvests ended by the early 1990s. The only killer whales reported as commercially taken in the northeastern Pacific from the 1940s to early 1980s were a single animal in British Columbia in 1955 (Pike and MacAskie 1969) and five whales in California between 1959 and 1970 (Rice 1974). Although the commercial harvests of this period likely reduced killer whale abundance in some regions of the world, they probably had no impact on most populations in the northeastern Pacific. The current numbers of killer whales hunted for profit in the world are probably quite small (Baird 2001, Reeves et al. 2003), but documentation is lacking. Very small amounts of killer whale meat continued to be present in retail markets in Japan and South Korea during the 1990s, but may have come from animals incidentally caught in coastal fisheries (Baker et al. 2000).

Mortality associated with killer whale depredation. As with other large and highly visible predators, killer whales historically generated a variety of negative emotions among people, ranging from general dislike to fear and outright hatred. Such feelings were most prevalent among fishermen, whalers, sealers, and sportsmen, and largely stemmed from perceived competition over prey resources, damage caused to fishing gear and captured baleen whales, and the belief that killer whales scared off other marine mammals that were potentially harvestable. As a result, killer whales were widely persecuted to varying extents. Shooting was probably the most popular method of responding to nuisance animals (Bennett 1932, Budker 1958, Heptner et al. 1976) and likely resulted in the loss of substantial numbers of whales in some localities so that significant population declines may have occurred (Lien et al. 1988, Olesiuk et al. 1990a). Governments sometimes supported the use of lethal control measures on killer whales, as seen in the opportunistic shooting of animals by fisheries department personnel in British Columbia (Ford et al. 2000, Baird 2001), the establishment of a bounty in Greenland from 1960-1975 (Heide-Jørgensen 1988), the recommendations of Russian scientists to conduct large-scale culling programs to protect seal populations for human harvest (Zenkovich 1938, Tomilin 1957), and the killing of possibly hundreds of whales by the U.S. military in Icelandic waters during the mid-1950s (Anonymous 1954, 1956, Vangstein 1956, Dahlheim 1981, Hoyt 1990) and in the North Atlantic in 1964 (Hoyt 1990).

Animosity toward killer whales has abated in recent decades, but often persists where interference with fishing activities occurs (Klinowska 1991, Matkin and Saulitis 1997). Conflicts with longline fishing operations are common in a number of regions, including Alaska (Rice and Saayman 1987, Matkin 1994, Matkin and Saulitis 1994, Yano and Dahlheim 1995a, 1995b, Ashford et al. 1996, Secchi and Vaske 1998, Visser 2000a, Whale and Dolphin Conservation Society 2002). Longline losses to whales can be extensive and reach 50-100% of the catch in extreme cases. Net fisheries are also affected, including gillnetting and purse seining (Young et al. 1993). As a result, fishermen
frequently resort to shooting at killer whales or harassing them with small underwater explosives (“seal bombs”) in an effort to drive off the whales (Matkin 1986, 1994, Hoyt 1990, Dahlheim and Matkin 1994, Yano and Dahlheim 1995a, Visser 2000a). Many bullet wounds are probably non-fatal, but accurate information on wounding and killing rates is difficult to obtain.

Deaths from deliberate shooting were probably once relatively common in Washington and British Columbia (Scheffer and Slipp 1948, Pike and MacAskie 1969, Haley 1970, Olesiuk et al. 1990a, Baird 2001). As an indication of the intensity of shooting that occurred until fairly recently, about 25% of the killer whales captured in Puget Sound for aquaria through 1970 bore bullet scars (Hoyt 1990). Shootings have tapered off since then (Hoyt 1990, Olesiuk et al. 1990a, Baird 2001) and only several resident animals currently show evidence of bullet wounds to their dorsal fins (Bigg et al. 1987, Ford et al. 2000). One Northern Resident, a matriarchal female, died from being shot in 1983 (Ford et al. 2000). Deliberate killings associated with fishery interactions are currently considered insignificant at a population level throughout the northeastern Pacific (Young et al. 1993, Carretta et al. 2001), but may be more prevalent than reported.

Aboriginal harvest. The extent to which North Pacific indigenous peoples hunted or utilized killer whales in the past is uncertain based on limited documentation. There is no tradition of hunting killer whales in the Canadian Arctic (Reeves and Mitchell 1988b) or along the Pacific coast (Ivashin and Votrogov 1981, Olesiuk et al. 1990a, Matkin et al. 1999a). Hoyt (1990) stated that a general taboo against killing the species was widespread among coastal North American tribes, often based on the fear that surviving whales would avenge the deaths of pod members. Native Alaskans commonly viewed killer whales with respect and considered them as totem (Matkin et al. 1999a). In Washington, the Makah are known to have occasionally caught killer whales and regarded their meat and fat superior to that of baleen whales (Scammon 1874). The species was not hunted by the neighboring Quillayute (Scheffer and Slipp 1948). Carl (1946) reported that the Nootka on Vancouver Island ate the meat and oil from killer whales, but it was unclear whether these were obtained through active hunting or only from beached animals. Small-scale subsistence harvesting of killer whales continues to the present at several locations in the world (Reeves et al. 2003).

Incidental human-related mortality. Drowning from accidental entanglement in nets and longlines is an additional minor source of fishing-related mortality in killer whales. Scheffer and Slipp (1948) documented several deaths of animals caught in gillnets and salmon traps in Washington between 1929 and 1943. Whales are occasionally observed near fishing gear in Washington and British Columbia, and more frequently in much of Alaska, but current evidence indicates that entanglements and deaths are rare except in the Bering Sea (Bigg and Wolman 1975, Barlow et al. 1994, Matkin 1994, Matkin and Saulitis 1994, Pierce et al. 1996, Carretta et al. 2001, 2004, Angliss and Outlaw 2005). One individual is known to have contacted a salmon gillnet in British Columbia in 1994, but did not entangle (Guenther et al. 1995). Typically, killer whales are able to avoid nets by swimming around or underneath them (Jacobsen 1986, Matkin 1994). Not all entanglements result in death.

In rare instances, killer whales are injured or killed by collisions with passing ships and powerboats, primarily from being struck by the propeller blades (Visser 1999c, Ford et al. 2000, Visser and Fertl 2000, Baird 2001, Carretta et al. 2001, 2004). Some animals with severe injuries eventually make
full recoveries, such as a female described by Ford et al. (2000) that showed healed wounds extending almost to her backbone. One mortality from a vessel collision was reported for Washington and British Columbia between the 1960s and 1990s (Baird 2002). However, two additional mortalities have occurred since then. In March of 2006 the lone killer whale, L98, residing in Nootka Sound for several years was killed by the engine of a tug boat. While L98 exhibited unusual behavior and often interacted with vessels, his death demonstrates the risk of vessel accidents and is the second fatal interaction reported. In July 2006, the death of a stranded Northern Resident female was attributed to blunt trauma, probably from a vessel strike (M. Joyce, pers. comm.) Five additional accidents between vessels and killer whales have been documented in the region since the 1990s (Baird 2001; DFO, unpubl. data, NMFS, unpubl. data). One took place on the Washington side of Haro Strait in 1998 and involved a slow moving boat that apparently did not injure the whale. In 1995, a Northern Resident was struck by a speedboat, causing a wound to the dorsal fin that quickly healed. Another Northern Resident was injured by a high-speed boat in 2003, but also recovered. A 2005 collision of a Southern Resident with a commercial whale watch vessel resulted in a minor injury to the whale, which subsequently healed. An additional Northern Resident calf was struck by a vessel in July 2006. Scheffer and Slipp (1948) also remarked about several collisions between killer whales and boats, but gave no information on effects to the whales.

Major oil spills are potentially catastrophic to killer whales and their environment, as illustrated by the probable impacts on the main resident and transient pods frequenting the area of the massive Exxon Valdez oil spill in Prince William Sound, Alaska, which occurred in 1989. Six of the 36 members of AB pod were missing within one week of the spill after being seen in heavily oiled waters and eight more disappeared within two years (Dahlheim and Matkin 1994, Matkin et al. 1994, 1999a, 2003, Matkin and Saulitis 1997). These were followed by the deaths of two orphaned calves in the winter of 1993-1994, as well as two adult males (including one fairly young individual) in 1994 and 1997 whose dorsal fins collapsed soon after the spill, indicating stress or ill health. AT1 pod lost eight of its 22 members by 1990 and two others by 1992. These mortality rates are unprecedented for the northeastern Pacific. Causes of death of the missing animals could not be confirmed because their carcasses were never located or fully necropsied, thus researchers were unable to directly attribute the deaths to oil contamination. However, retrospective evaluation shows it highly likely that oil exposure contributed to their deaths or did so indirectly for orphaned calves. Deterioration of the social structure of AB pod, with subgroups traveling independently from the pod and certain members no longer consistently associating with their closest relatives, was an additional probable outcome of the spill (Matkin et al. 2003). The spill may have also contributed to AT1 pod’s failure to produce any offspring since 1984 (see Matkin et al. 2003). AB pod began recovering in 1996, but is not projected to regain its pre-spill size until about 2015 (Matkin et al. 2003). Five other resident pods seen swimming through oil-sheened waters after the spill did not experience losses (Matkin et al. 1994). However, these pods likely spent less time in the spill area and were observed only in lighter sheens (C. O. Matkin, pers. comm.), which suggests that lesser degrees of exposure may not have been harmful to the whales.

Live-captures for aquaria. Killer whales have been immensely popular as display animals in the world’s aquaria since the 1960s and currently represent the third most widely kept species of toothed whale after bottlenose dolphins (Tursiops truncatus) and belugas (Kastelein et al. 2003). Interest in the live-capture of killer whales for public exhibition began in southern California in
1961, when Marineland of the Pacific captured a disoriented individual in California, which died shortly after (Bigg and Wolman 1975). An attempt to obtain a replacement animal followed at Haro Strait in 1962, but ended in the deaths of a female and possibly an accompanying male (Hoyt 1990). However, in 1964 and 1965, single whales were caught and held for periods of 3 and 12 months at the Vancouver Public Aquarium and Seattle Marine Aquarium, respectively, resulting in much publicity and demonstrating the species’ highly appealing qualities when held in captivity. The development of a netting technique in 1965, the initiation of commercial netting operations in 1968, and an immediate demand for captive animals led to large increases in capture effort beginning in 1967 (Bigg and Wolman 1975). With the exception of an individual collected in Japan in 1972, Washington and British Columbia served as the only source of captive killer whales until 1976 (Hoyt 1990, OrcaInfo 1999).

Operators working in Washington and British Columbia captured most whales by following a pod until it entered an appropriate bay, where netting could take place (Bigg and Wolman 1975). Nets were then quickly set across the bay’s entrance or pursed around the pod. The whales were held for several days or longer, which allowed them to calm down and be sorted for retention or release. Puget Sound was preferred as a capture site because it offered fewer escape routes and a number of bays with shallower waters, both of which aided netting efforts, and it had a large network of shore-based observers that provided movement updates on the whales (Bigg and Wolman 1975). Important capture sites included Penn Cove on Whidbey Island (102-113 whales captured), Carr Inlet at the southern end of the Kitsap Peninsula (60-70 whales captured), and Yukon Harbor on the eastern side of the Kitsap Peninsula (40-48 whales captured) (Table 4). During these efforts, many individual whales were caught multiple times.

From 1962-1977, 275-307 whales were captured in Washington and British Columbia, of which 55 were transferred to aquaria, 12 or 13 died during capture operations, and 208-240 were released or escaped back into the wild (Table 4). However, these figures exclude a few additional deaths that were never made public (K. C. Balcomb, pers. comm.). The Southern Residents were the most heavily affected population, with 36 whales collected and at least 11 dying (Table 4). Peak harvest years occurred from 1967-1971, when 80% of the retained whales were caught. Due to public opposition (e.g., Haley 1970), capture operations declined significantly after 1971, with only eight whales removed beyond this date. The British Columbia provincial government prohibited further live-captures in 1975, although an injured female calf was sent to an aquarium for permanent rehabilitation in August 1977 (Hoyt 1990, Dahlheim and Heyning 1999). In 1982, the British Columbia government issued a final license to capture killer whales in Pedder Bay, but the license holder was unable to catch any whales because none entered the bay (R. W. Baird, pers. comm.). The Washington State Senate passed a resolution (Senate Resolution 1976-222) requesting the U.S. federal government to establish a moratorium on harassment, hunting, and live-capture of the species in 1976 after six transient whales were caught in Budd Inlet, Olympia (see Hoyt [1990] for an account of the events surrounding this capture). The total revenue generated from the sale of whales captured in Washington and British Columbia probably exceeded $1,000,000, with the prices of individual animals ranging from about $8,000 in 1965 to $20,000 in 1970 (Bigg and Wolman 1975).

<table>
<thead>
<tr>
<th>Datea</th>
<th>Location</th>
<th>No. of whales caughtb</th>
<th>No. of whales retained</th>
<th>No. of whales that died</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Residents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 1962</td>
<td>Haro Strait, Wash.</td>
<td>1d,e</td>
<td>0</td>
<td>1-2d,e</td>
</tr>
<tr>
<td>Jul 1964</td>
<td>Saturna Island, B.C.</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oct 1965</td>
<td>Carr Inlet, Wash.</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jul 1966</td>
<td>Steveston, B.C.</td>
<td>1e</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Feb 1967</td>
<td>Yukon Harbor, Wash.</td>
<td>15e</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Feb 1968</td>
<td>Vaughn Bay, Wash.</td>
<td>12-15</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Oct 1968</td>
<td>Yukon Harbor, Wash.</td>
<td>25-33</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Apr 1969</td>
<td>Carr Inlet, Wash.</td>
<td>11e</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Oct 1969</td>
<td>Penn Cove, Wash.</td>
<td>7-9e</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Feb 1970</td>
<td>Carr Inlet, Wash.</td>
<td>6-14e</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aug 1970</td>
<td>Penn Cove, Wash.</td>
<td>80</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Aug 1971</td>
<td>Port Madison, Wash.</td>
<td>1e,f</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nov 1971</td>
<td>Carr Inlet, Wash.</td>
<td>15-24</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mar 1972</td>
<td>Carr Inlet, Wash.</td>
<td>9-11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mar 1973</td>
<td>Ocean City, Wash.</td>
<td>1e,f</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aug 1973</td>
<td>Pedder Bay, B.C.</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aug 1973</td>
<td>Pedder Bay, B.C.</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Aug 1977</td>
<td>Menzies Bay, B.C.</td>
<td>1e</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>224-256</td>
<td>36</td>
<td>11-12</td>
</tr>
<tr>
<td>Northern Residents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun 1965</td>
<td>Namu, B.C.</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jul 1967</td>
<td>Port Hardy, B.C.</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Feb 1968</td>
<td>Pender Harbour, B.C.</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Apr 1968</td>
<td>Pender Harbour, B.C.</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Jul 1968</td>
<td>Malcolm Island, B.C.</td>
<td>11g</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dec 1969</td>
<td>Pender Harbour, B.C.</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>34</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Transients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 1970</td>
<td>Pedder Bay, B.C.</td>
<td>5</td>
<td>2h</td>
<td>1</td>
</tr>
<tr>
<td>Aug 1975</td>
<td>Pedder Bay, B.C.</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Mar 1976</td>
<td>Budd Inlet, Wash.</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>17</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>275-307</td>
<td>55</td>
<td>12-13</td>
</tr>
</tbody>
</table>

a Captures are listed chronologically for Washington, followed by British Columbia.

b The exact numbers of whales caught in Washington were often not known due to poor record keeping and the difficulty in counting the numbers of individuals present in large groups (M. A. Bigg in Hoyt 1990).

c The exact location in Haro Strait is not known (Hoyt 1990), but is presumed here to have been in Washington.

d An adult female was shot and killed after being captured, but an adult male was also shot once during the incident (Hoyt 1990). Bigg and Wolman (1975) and Olesiuk et al. (1990a) presumed that the male also died, but based on Hoyt’s (1990) account, there is no conclusive evidence of this (also see Asper and Cornell 1977).

e Presumed to be Southern Residents (Olesiuk et al. 1990a).

f Captured after stranding (Bigg and Wolman 1975).

g Presumed to be Northern Residents (Olesiuk et al. 1990a).

h Bigg and Wolman (1975) and Asper and Cornell (1977) listed three whales as being retained from this capture, but the accounts of Hoyt (1990) and Ford and Ellis (1999) disclosed the death of an adult female from apparent malnutrition in its holding pen. Her carcass was then secretly disposed of.
Based on slightly updated information from that presented by Olesiuk et al. (1990a), 70% (47 or 48 animals) of the whales retained or killed were Southern Residents, 22% (15 animals) were Northern Residents, and 7% (5 animals) were transients. For the Southern Resident community, collections and deaths were biased toward immature animals (63% of the total) and males (57% of identified animals). Removed whales included 17 immature males, 10 immature females, nine mature females, seven or eight mature males, and four (three immatures, one adult) individuals of unknown sex. Only 15 of the whales were subsequently identified by pod, with nine animals coming from K pod, five from L pod, and one from J pod (Bigg 1982). These removals substantially reduced the size of the Southern Resident population, which did not recover to estimated precapture numbers until 1993 (Baird 2001). Furthermore, selective removal of younger animals and males produced a skewed age- and sex-composition in the population, which probably worked to slow later recovery (Olesiuk et al. 1990a).

One Southern Resident whale from the live-capture era, known as Lolita and a member of L pod, remains alive in captivity at the Miami Seaquarium. Efforts have been made to raise support to relocate this whale to the wild and reunite her with the Southern Residents, although similar captive release efforts, involving one killer whale (e.g., Keiko) and other delphinids, have been largely unsuccessful. Lolita was captured in 1970 prior to the establishment of the MMPA and therefore, does not fall under the jurisdiction of NMFS.

F. POPULATION STATUS

Global Status: Past and Present

Little information on the former abundance of killer whales is currently available from any portion of their range. Scammon (1874), who worked primarily in the northeastern Pacific, considered the species as “not numerous” in comparison to other delphinids, but anecdotal remarks such as this provide little basis for recognizing even gross changes in population levels during the past 200 years. Nevertheless, it is likely that many populations have declined significantly since 1800 in response to greatly diminished stocks of fish, whales, and pinnipeds in the world’s oceans (Reeves and Mitchell 1988a).

Killer whales have proven difficult to census in many areas because of their general scarcity as well as their widespread and often unpredictable movement patterns (Ford 2002). Many older characterizations of relative abundance may well reflect the amount of observation effort rather than actual differences in density among sites (Matkin and Leatherwood 1986). During the past few decades, populations have been surveyed primarily through the use of photo-identification studies or line-transect counts (Forney and Wade in press). Photo-identification is capable of providing precise information on population size, demographic traits, and social behavior (Hammond et al. 1990), making it the preferred method in locations where the species is regularly seen. It requires intensive effort spread over multi-year periods and, due to the species’ mobility, should be conducted over large geographic areas to obtain accurate results. Photo-identification catalogs for killer whales were first established in the early 1970s for the resident communities of Washington and British Columbia (Balcomb et al. 1980, Sugarman 1984, Bigg et al. 1987, van Ginneken et al.
1998, Ford and Ellis 1999, Ford et al. 2000, Ellifrit et al. 2006) and have since been initiated for most areas where population studies have been undertaken (e.g., Heise et al. 1991, Black et al. 1997, Dahlheim 1997, Dahlheim et al. 1997, Matkin et al. 1999a). All photographic surveys rely on recognition of individual animals through their distinctive dorsal fins and saddle patches, although eye-patch traits are sometimes used to supplement identification (Baird 1994, Visser and Mäkeläinen 2000). Line-transect surveys from ships or aircraft have generally been undertaken in large areas of open ocean where photo-identification is impractical. The results of line-transect surveys are almost always accompanied by large confidence limits, making it difficult to establish true population sizes and to compare trends over time. Furthermore, the technique is unsuited for gathering most demographic data.

As top-level predators, killer whales occur in low densities throughout most of their geographic range. Densities are typically much greater in colder waters with higher productivity than in tropical regions (Forney and Wade in press). Reeves and Leatherwood (1994) reported the worldwide population as probably exceeding 100,000 whales, based on information presented in Klinowska (1991), but this was undoubtedly an overestimate influenced by preliminary count data from the Antarctic. Forney and Wade (in press) have recently revised this figure to a minimum of about 50,000 animals. A number of regional abundance estimates have been made in recent years, with emerging evidence suggesting that many populations are relatively small (Whale and Dolphin Conservation Society 2002, Forney and Wade in press). In the northeastern Pacific, at least 2,250-2,700 resident, transient, and offshore whales are currently thought to exist from California to the western Aleutian Islands and Bering Sea (see population estimates below). Estimates for other northern populations include 500-1,500 animals in Norwegian coastal waters (Christensen 1988) and about 190 whales off Iceland (Klinowska 1991). New Zealand’s entire population is believed to number fewer than 200 animals (I. N. Visser, unpubl. data). A recent population estimate of about 25,000 killer whales in Antarctica (Branch and Butterworth 2001) is considered much more accurate than earlier projections (Hammond 1984; Butterworth et al. 1994; T. A. Branch, pers. comm.). Densities in this region are highest near the ice edge (Kasamatsu et al. 2000). An estimate of 8,500 killer whales for the eastern tropical Pacific, as derived from shipborne surveys (Wade and Gerrodette 1993), is probably far too large, given that densities are substantially reduced at lower latitudes. Abundance in many other areas remains poorly investigated (Whale and Dolphin Conservation Society 2002). Trend information is lacking for virtually all populations other than several resident and the AT1 transient communities of the northeastern Pacific.

Status of Southern Resident Killer Whales

Status before 1974. Several lines of evidence argue that the Southern Resident community may have numbered more than 200 whales until perhaps the mid- to late-1800s (Kranh et al. 2002), when Euro-American settlement began to impact the region’s natural resources. Recent genetic investigations using microsatellite DNA reveal that the genetic diversity of the population resembles that of the Northern Residents (Barrett-Lennard 2000, Barrett-Lennard and Ellis 2001), indicating that the two were possibly once similar in size. This scenario would be unlikely if the Southern Resident population had remained small for many generations, which would have caused a gradual loss of genetic diversity. The presence of relatively few acoustic clans and pods in the Southern Residents (1 clan, 3 pods), as compared to the northern (3 clans, 16 pods) and Southern
Alaska Residents (2 clans, 11 pods), also implies that the southern population may have been larger (Krahn et al. 2002). Finally, reductions in salmon and other prey along much of the west coast of North America during the past 150 years, especially from Washington to California (Nehlson 1997, Kope and Wainwright 1998), have likely lessened the region’s carrying capacity for resident killer whales (Krahn et al. 2002).

Efforts to determine killer whale population trends in the northeastern Pacific during the past century are hindered by an absence of empirical information prior to 1974. A report by Scheffer and Slipp (1948) is the only older account to mention abundance in the core range of the Southern Residents. It noted that the species was “frequently seen” during the 1940s in the Strait of Juan de Fuca, northern Puget Sound, and off the coast of the Olympic Peninsula, with smaller numbers occurring farther south along Washington’s outer coast. Palo (1972) put forth a tentative estimate of 225-300 whales for Puget Sound and the Georgia Basin in 1970, but was admittedly unsure of the figure’s validity. The authors of both reports were unaware of the different forms of killer whales, thus their estimates made no distinction between resident, transient, and offshore populations.

Olesiuk et al. (1990a) modeled the population size of the Southern Resident community between 1960 and 1973 and projected an increase in numbers from about 78 to 96 whales from 1960 to 1967 (Table 5, Figure 8). This was probably a result of the population recovering from the opportunistic shooting that was widespread before 1960 (see Mortality Associated with Killer Whale Depredation) and other human impacts, or may have been caused by some unidentified improvement in the region’s capacity to support the whales (Olesiuk et al. 1990a). Beginning in about 1967, removals of whales by the live-capture fishery caused an immediate decline in Southern Resident numbers (see Live-Captures for Aquaria). The population fell an estimated 30% to about 67 whales by 1971 (Olesiuk et al. 1990a). Removals from the Southern Resident community are known to have included nine animals from K pod, five from L pod, and one from J pod (Bigg 1982). NMFS added the population number from 1971 (67) to the number of resident killer whales taken or killed during live-captures (68) and considered additional sources of mortality (i.e., shootings) to estimate a minimum historical population size of about 140 animals.

Status from 1974-2006. Photo-identification studies have been the foundation of all Southern Resident research since the early 1970s. Annual censuses of the community were initiated by Michael Bigg of Canada’s Department of Fisheries and Oceans in 1974 (Bigg et al. 1976). The Center for Whale Research assumed responsibility for the counts in 1976 (Balcomb et al. 1980) and has directed them since then. The surveys are typically performed from May to October, when all three pods reside near the San Juan Islands, and are considered complete censuses of the entire population. It should be noted that small discrepancies in the annual count totals of the Southern Residents (e.g., see Ford et al. [2000], Baird [2001], Taylor and Platt [2001], Krahn et al. [2002, 2004a], and Table 5 of this report) are due in part to differences in the reporting times of yearly numbers and whether or not whales that died were tallied during the year of their death. The count criteria used in this report appear in Table 5 and Figures 7 and 8.

The population has gone through several periods of growth and decline since 1974 (Table 5, Figure 8), when live-captures were ending and numbers were judged as beneath carrying capacity (Olesiuk
Table 5. Population and pod sizes of Southern and Northern Resident killer whales in Washington and British Columbia, 1960-2005.

<table>
<thead>
<tr>
<th>Year</th>
<th>J pod</th>
<th>K pod</th>
<th>L pod</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>97</td>
</tr>
<tr>
<td>1961</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
<td>98</td>
</tr>
<tr>
<td>1962</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>101</td>
</tr>
<tr>
<td>1963</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>105</td>
</tr>
<tr>
<td>1964</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>1965</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94</td>
<td>117</td>
</tr>
<tr>
<td>1966</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>115</td>
</tr>
<tr>
<td>1967</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>96</td>
<td>119</td>
</tr>
<tr>
<td>1968</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>89</td>
<td>120</td>
</tr>
<tr>
<td>1969</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>111</td>
</tr>
<tr>
<td>1970</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>108</td>
</tr>
<tr>
<td>1971</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>113</td>
</tr>
<tr>
<td>1972</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>69</td>
<td>115</td>
</tr>
<tr>
<td>1973</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>71</td>
<td>121</td>
</tr>
<tr>
<td>1974</td>
<td>15</td>
<td>16</td>
<td>39</td>
<td>70</td>
<td>123</td>
</tr>
<tr>
<td>1975</td>
<td>15</td>
<td>15</td>
<td>41</td>
<td>71</td>
<td>132</td>
</tr>
<tr>
<td>1976</td>
<td>16</td>
<td>14</td>
<td>40</td>
<td>70</td>
<td>131</td>
</tr>
<tr>
<td>1977</td>
<td>18</td>
<td>15</td>
<td>46</td>
<td>79</td>
<td>134</td>
</tr>
<tr>
<td>1978</td>
<td>18</td>
<td>15</td>
<td>46</td>
<td>79</td>
<td>137</td>
</tr>
<tr>
<td>1979</td>
<td>19</td>
<td>15</td>
<td>47</td>
<td>81</td>
<td>140</td>
</tr>
<tr>
<td>1980</td>
<td>19</td>
<td>15</td>
<td>49</td>
<td>83</td>
<td>147</td>
</tr>
<tr>
<td>1981</td>
<td>19</td>
<td>15</td>
<td>47</td>
<td>81</td>
<td>150</td>
</tr>
<tr>
<td>1982</td>
<td>19</td>
<td>14</td>
<td>45</td>
<td>78</td>
<td>151</td>
</tr>
<tr>
<td>1983</td>
<td>19</td>
<td>14</td>
<td>43</td>
<td>76</td>
<td>155</td>
</tr>
<tr>
<td>1984</td>
<td>17</td>
<td>14</td>
<td>43</td>
<td>74</td>
<td>156</td>
</tr>
<tr>
<td>1985</td>
<td>18</td>
<td>14</td>
<td>45</td>
<td>77</td>
<td>163</td>
</tr>
<tr>
<td>1986</td>
<td>17</td>
<td>16</td>
<td>48</td>
<td>81</td>
<td>171</td>
</tr>
<tr>
<td>1987</td>
<td>18</td>
<td>17</td>
<td>49</td>
<td>84</td>
<td>177</td>
</tr>
<tr>
<td>1988</td>
<td>19</td>
<td>18</td>
<td>48</td>
<td>85</td>
<td>180</td>
</tr>
<tr>
<td>1989</td>
<td>18</td>
<td>17</td>
<td>50</td>
<td>85</td>
<td>187</td>
</tr>
<tr>
<td>1990</td>
<td>18</td>
<td>18</td>
<td>53</td>
<td>89</td>
<td>194</td>
</tr>
<tr>
<td>1991</td>
<td>20</td>
<td>17</td>
<td>55</td>
<td>92</td>
<td>201</td>
</tr>
<tr>
<td>1992</td>
<td>19</td>
<td>16</td>
<td>56</td>
<td>91</td>
<td>199</td>
</tr>
<tr>
<td>1993</td>
<td>21</td>
<td>17</td>
<td>59</td>
<td>97</td>
<td>197</td>
</tr>
<tr>
<td>1994</td>
<td>20</td>
<td>19</td>
<td>57</td>
<td>96</td>
<td>202</td>
</tr>
<tr>
<td>1995</td>
<td>22</td>
<td>18</td>
<td>58</td>
<td>98</td>
<td>205</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>19</td>
<td>56</td>
<td>97</td>
<td>212</td>
</tr>
<tr>
<td>1997</td>
<td>21</td>
<td>19</td>
<td>52</td>
<td>92</td>
<td>220</td>
</tr>
<tr>
<td>1998</td>
<td>22</td>
<td>18</td>
<td>49</td>
<td>89</td>
<td>216</td>
</tr>
<tr>
<td>1999</td>
<td>20</td>
<td>17</td>
<td>48</td>
<td>85</td>
<td>216</td>
</tr>
<tr>
<td>2000</td>
<td>19</td>
<td>17</td>
<td>47</td>
<td>83</td>
<td>209</td>
</tr>
<tr>
<td>2001</td>
<td>20</td>
<td>18</td>
<td>43</td>
<td>81</td>
<td>201</td>
</tr>
<tr>
<td>2002</td>
<td>20</td>
<td>19</td>
<td>44</td>
<td>83</td>
<td>202</td>
</tr>
<tr>
<td>2003</td>
<td>22</td>
<td>20</td>
<td>42</td>
<td>84</td>
<td>204</td>
</tr>
<tr>
<td>2004</td>
<td>23</td>
<td>21</td>
<td>44</td>
<td>88</td>
<td>219</td>
</tr>
<tr>
<td>2005</td>
<td>24</td>
<td>20</td>
<td>44</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>24</td>
<td>22</td>
<td>44</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

a Southern Resident data from 1960-1973 are estimates based on projections from the matrix model of Olesiuk et al. (1990a). Data from 1974-2006 were determined through photo-identification surveys and were provided by the Center for Whale Research (unpubl. data). Data for these years represent the number of whales present at the end of each calendar year, except for 2006, when data extend only through September. Whales verified as missing are assumed to have died and may be removed from count totals within a calendar year, depending on date of disappearance (K. C. Balcomb, pers. comm.). Numbers for L pod and the entire Southern Resident community from 2001-2005 include L98.

b Northern Resident data from 1960-1974 are estimates based on projections from the matrix model of Olesiuk et al. (1990a). Data from 1975-2004 were determined through photo-identification surveys and were provided by J. K. B. Ford (unpubl. data) and Olesiuk et al. (2005). Count data represent the number of whales believed to be alive during a calendar year. Whales are counted through their last year of being seen (J. K. B. Ford, pers. comm.).
Figure 8. Population size and trend of Southern Resident killer whales, 1960-2006. Data from 1960-1973 (open circles, gray line) are number projections from the matrix model of Olesiuk et al. (1990a). Data from 1974-2006 (diamonds, black line) were obtained through photo-identification surveys of the three pods (J, K, and L) in this community and were provided by the Center for Whale Research (unpubl. data). Data for these years represent the number of whales present at the end of each calendar year except for 2006, when data extend only through September.

Between 1974 and 1980, total whale numbers expanded 19% (mean annual growth rate of 3.1%) from 70 to 83 animals. J and L pods grew 27% and 26%, respectively, during this period, whereas K pod decreased by 6%.

This was followed by four consecutive years of decrease from 1981-1984, when count results fell 11% (mean annual decline rate of 2.7%) to 74 whales. The decline coincided with periods of fewer births and greater mortality among adult females and juveniles (Taylor and Plater 2001). A distorted age- and sex-structure, likely caused by the selective cropping of animals during live-captures 8-17 years earlier, also appears to have been a significant factor in the decline (Olesiuk et al. 1990a). This resulted in fewer females and males maturing to reproductive age and a reduction in adult males that was possibly below the number needed for optimal reproduction. An unusually large cohort of females that stopped bearing young also played a role in the decline (Olesiuk et al. 1990a). Pod membership during this period dropped by 12% for L pod, 11% for J pod, and 7% for K pod (Table 5, Figure 9).
In 1985, the Southern Residents entered an 11-year growth phase, which began with a drop-off in deaths and a pulse in births caused partly by the maturation of more juveniles (Taylor and Plater 2001). Total numbers eventually peaked at 98 animals in 1995 (Table 5, Figure 8), representing an increase of 32% (mean annual growth rate of 2.9%) in the population. Pod growth during the period was 37% in L pod, 36% in K pod, and 29% in J pod (Table 5, Figure 8).

The Southern Resident community entered yet another period of decline in 1996, with a 17% reduction (mean annual decline rate of 2.9%) in numbers occurring by 2001, when 81 whales remained (Table 5, Figure 8). All three pods suffered reductions in membership during this period, with L pod falling 28%, J pod 14%, and K pod 11% (Table 5, Figure 9). There is no indication that this decline was caused by any lingering demographic effects related to the live-capture era (Taylor 2004). Instead, it appears to have resulted more from an unprecedented 9-year span of relatively poor survival in nearly all age classes and both sexes and secondarily from an extended period of poor reproduction (Krahn et al. 2002, 2004a). During this decline, the status of L pod began to attract special concern because of its poor performance compared to J and K pods, including greater than normal mortality and lower fecundity (Taylor 2004).

Figure 9. Population sizes and trends of the three Southern Resident killer whale pods (J, K, and L) from 1974-2006. Data were obtained through photo-identification surveys and were provided by the Center for Whale Research (unpubl. data). Data represent the number of whales present in each pod at the end of a calendar year, except for 2006, when data extend only through September (K. C. Balcomb, pers. comm.).
The population reversed its trend again in 2002 and had grown to 90 whales by September 2006 (Table 5, Figure 9). Growth by J and K pods accounts for most of this gain and both pods now exceed their largest sizes achieved in the 1990s. By comparison, L pod declined to just 42 members in 2003, but numbered 45 animals in 2006. This pod has experienced means of 2.6 deaths and 1.5 births per year since 1995 (Center for Whale Research, unpubl. data).

At present, the southern resident population has declined to essentially the same size that was estimated during the early 1960s, when it was considered as likely depleted (Olesiuk et al. 1990a). Since censuses began in 1974, J and K pods have increased their sizes by 60% (mean of 1.9% per year) and 38% (mean of 1.2% per year), respectively. The largest pod, L pod, has grown 28.6% (mean of 0.9% per year) during this period, but more importantly, experienced a 10-year decline from 1994-2003 that threatened to reduce the pod’s size below any previously recorded level. Despite hopeful data from 2002-2006 indicating that L pod’s decline may have finally ended, such a conclusion is premature. From 1974-2006, there was an average of 3.4 births and 2.7 deaths per year in the community as a whole (Center for Whale Research, unpubl. data).

Olesiuk et al. (1990a) used data from 1974-1987 to estimate an intrinsic growth rate of 2.92% per year for both resident populations combined. However, observed rates of increase differed substantially for the two communities (1.3% annually from 1974-1987 for the Southern Residents vs. 2.9% annually from 1979-1986 for the Northern Residents). Brault and Caswell (1993) also examined growth rates for both populations during the same periods, but used a stage-structured model and based their calculations on females only. Intrinsic and observed rates of growth among the Southern Residents were 2.5% and 0.7% per year, respectively, with the observed rate being much lower than in the Northern Residents. Non-significant differences in intrinsic growth rates existed among the three southern pods (J pod, 3.6% per year; K pod, 1.8% per year; and L pod, 1.5% per year). This study concluded that population growth rates in killer whales were more sensitive to changes in adult survival, as would be expected in any long-lived species, than to changes in juvenile survival and fertility.

Using data from 1974-2003, Krahn et al. (2002, 2004a) further analyzed the population dynamics of the Southern Residents in an effort to identify demographic factors contributing to the population’s latest decline. For their analyses, six age and sex classes were defined as follows: calves in their first summer (<1 year of age), juveniles of both sexes (1-10 years of age), females of reproductive age (11-41 years of age), post-reproductive females (42 years of age and older), young adult males (11-21 years of age), and older males (22 years of age and older). These studies found sizable differences in annual survival among age and sex classes, with an overall mean of 0.969 from 1974-2000 (Krahn et al. 2002). Modeling of annual survival data determined that overall survival was relatively constant within approximately seven-year periods, but differed greatly between consecutive periods (Figure 10; Krahn et al. 2004a). Greater than average survival rates were detected from 1974-1979, 1985-1992, and 2001-2002, but rates were below average from 1980-1984 and 1993-2000. Changes in survival were not related to stochastic variation caused by the population’s small size (e.g., random patterns in births or deaths) or to annual fluctuations in survival. Krahn et al. (2002) therefore suggested that survival patterns were more likely influenced by an external cause, such as periodic changes in prey availability or exposure to environmental contaminants. The lowest rates of survival in each of the population’s six age and sex categories
occurred from 1993-2000 (Krahn et al. 2004a). Survival fell most sharply in older males, whereas reproductive females showed the smallest decline in survival (Figure 11). From 1993-2001, the percentage of males 15 years of age or older in the population fell from 17% to 11% (Krahn et al. 2002), placing it much lower than the 19% necessary for a stable age and sex distribution (Olesiuk et al. 1990a). Investigation of temporal patterns in survival rates found no differences among the three pods (Figure 12; Krahn et al. 2004a). Each pod experienced simultaneous reductions in survival during the declines of the early 1980s and the late 1990s. However, L pod has consistently displayed lower survival rates than J and K pods.

Figure 10. Model-averaged estimates of crude survival (black line) for the entire Southern Resident population, 1974-2002 (Krahn et al. 2004a). Annual survival levels are represented by triangles.

Krahn et al. (2002, 2004a) also examined fecundity levels in the Southern Resident population. Based on numbers of calves that survived to their first summer, average fecundity of reproductive-aged females was estimated at 12% from 1974-2000, which corresponded to a mean interval of 7.7 years between surviving calves. Modeling revealed that annual birth rates best fit a periodic function with about eight years between peaks (Figure 13; Krahn et al. 2004a). Low points in the numbers of recruited calves occurred in 1974-1975, 1982, 1987, and 1996, and peaks occurred in 1976, 1985, and 1994. Considerable variability exists in the annual fecundity rate of the population, as expected in a small population with few reproductively active females (Krahn et al. 2002). However, because the data fit a periodic function, reproductive output also appears to be partially synchronized between females. Such a pattern might result from occasional poor environmental years causing high calf mortality, which might then lead to a pulse in births after conditions recovered (Krahn et al. 2002). Birthing synchrony might then be retained for a certain period of time thereafter.
Figure 11. Model-averaged estimates of survival by age and sex category for the entire Southern Resident population, 1974-2002 (Krahn et al. 2004a).

Figure 12. Annual survival estimates by pod for the Southern Resident population, 1974-2002 (Krahn et al. 2004a).
During the past 12 years, J and K pods appear to have increased or maintained their calf productivity when compared to the previous decade (Center for Whale Research, unpubl. data). In contrast, calf productivity in L pod has dropped by about 35% in the past 12 years, with only 18 calves recorded. This may be partially due to the females of this pod having only one fully mature adult male from J and K pods to mate with between 1998 and 2003 (Taylor 2004, Wiles 2004). Additionally, L pod has experienced higher calf mortality (6 of 18 viable calves born during the past 12 years) than either J pod (0 of 12 viable calves) or K pod (3 of 11 viable calves) (Center for Whale Research, unpubl. data).

Figure 13. The best fitting model of fecundity (based on viable calves per reproductive-age female), which is a periodic function with 3-year constant periods (gray line), for the Southern Resident population, 1974-2002 (Krahn et al. 2004a). The model average fecundity (black line) and annual fecundity rates (triangles) for the population are also shown.

Brief histories of the three southern resident pods are provided below. In September 2006, the community as a whole had nine mature males (10.0% of the population), 25 reproductive females (27.8%), 13 post-reproductive females (14.4%), 19 juvenile males (21.1%), 10 juvenile females (11.1%), and 14 immature animals of unknown sex (15.5%) (Ellifrit et al. 2006; Center for Whale Research, unpubl. data). This contrasts with the population’s structure in 1987, when about 21% of the animals were mature males, 19% were reproductive females, 15% were post-reproductive females, and 45% were juveniles of both sexes (Olesiuk et al. 1990a). Older demographic information on the pods can be found elsewhere (Balcomb et al. 1980, 1982, Balcomb 1982, Bigg 1982, Balcomb and Bigg 1986, Bigg et al. 1987, Ford et al. 2000, van Ginneken et al. 2000).

J pod. This pod’s overall expansion from 15 whales in 1974 to 22 whales in September 2006 has been mixed with several minor declines and increases during intervening years (Table 5, Figure 9). The pod is currently comprised of four matrilines totaling one adult male, six reproductive females, two post-reproductive females, six immature males, six immature females, and three immature
animals of unknown sex (Ellifrit et al. 2006; Center for Whale Research, unpubl. data). The oldest member is J2, which is estimated to be in her eighties or nineties (Ford et al. 2000). J1 is the only adult male and is thought to be in his mid-fifties.

K pod. Membership in K pod has varied from 14 to 22 whales since 1974, with 22 animals present in September 2006 (Table 5, Figure 9). The pod currently holds four matrilines consisting of one mature male, six reproductive females, three post-reproductive or non-reproductive females, five immature males, two immature females, and five immature whales of unknown sex (Ellifrit et al. 2006; Center for Whale Research, unpubl. data). The oldest member is K7, which is believed to be in her eighties or nineties (Ford et al. 2000). The pod was without an adult male for several years in the late 1990s, following the death of K1 in 1997. The oldest male (K21) is now 20 years of age. This pod was cropped especially heavily during the live-capture era (Bigg 1982).

L pod. This is the largest of the three southern resident pods and grew from 39 whales in 1974 to a peak of 59 whales in 1993 (Table 5, Figure 9). Pod membership has been largely in decline since then and totaled just 42 animals at the end of 2003, although two individuals have been added since then. L pod currently contains 12 matrilines with seven adult males, 13 reproductive females, eight post-reproductive females, eight immature males, two immature females, and six immature animals of unknown sex (Ellifrit et al. 2006; Center for Whale Research, unpubl. data). The percentage of immatures (40.9%) is currently the lowest of any pod. Three matrilines in L pod are represented by single whales, either males or post-reproductive females, and are destined to eventually die out. The oldest females are L25 and L12, which are estimated to be 78 and 73 years old, respectively (Ford et al. 2000, Ellifrit et al. 2006). L41 and L57 are the oldest males and were both born in 1977. L98, a six-year-old male that lived solitarily in Nootka Sound on the west side of Vancouver Island after becoming separated from the pod in July 2001, is included in the population figures used in this document through 2005. He died in March 2006 after colliding with a tugboat. During the 1980s, Hoelzel (1993) believed that L pod had separated into three smaller pods, which were identified as L8, L10, and L35 pods.

Future predictions. Several studies have used a technique known as population viability analysis (PVA) to assess the future risk of extinction of the Southern Resident population. PVAs rely on known life history parameters to reach their conclusions and usually assume that conditions observed in the past will continue in the future. Limitations in models can produce unreliable results for a variety of reasons, such as the use of inaccurate demographic data and failure to correctly consider environmental variables and parameter uncertainty (Beissinger and Westphal 1998, Reed et al. 1998). Thus, PVA forecasts should be viewed with some caution.

The initial PVAs of the Southern Residents conducted by Taylor and Plater (2001) and Krahn et al. (2002) have been recently updated by Krahn et al. (2004a), who examined demographic information from several time periods (1974-2003, 1990-2003, and 1994-2003) to estimate extinction risk. Mean survival rates varied among periods and were highest from 1974-2003 and lowest from 1994-2003. In contrast, the model used a single fecundity rate, averaged from 1974-2003, for all simulations. The study considered seven values of carrying capacity for the population ranging from 100 to 400 whales, three levels of catastrophic event (e.g., oil spills and disease outbreaks) frequency ranging from none to twice per century, and three levels of catastrophic event magnitude.
in which 0, 10, or 20% of the animals died per event. Analyses indicated that the Southern Residents have extinction probabilities of <0.1-3% in the next 100 years and 2-42% in the next 300 years under the scenario that the population’s survival rates from 1974-2003 continue into the future. However, the likelihood of extinction was greater if future survival rates match those from 1990-2003 or 1994-2003. The most pessimistic predictions were associated with survival rates from 1994-2003, with extinction risks predicted at 6-19% in 100 years and 68-94% in 300 years. In all cases, higher extinction risks were linked to lower carrying capacities and more frequent and severe catastrophes. Krahn et al. (2004a) also assessed the population’s probability of slipping to a level of “quasi-extinction,” which was defined as the stage at which 10 or fewer males or females remained, thereby representing a threshold from which the population was not expected to recover. These simulations suggested that the Southern Residents have a 1-15% chance of reaching quasi-extinction in the next 100 years and a 4-68% chance in the next 300 years if survival rates from 1974-2003 continue. Predictions were again most pessimistic using survival data from 1994-2003, with the risk of quasi-extinction predicted at 39-67% in 100 years and 76-98% in 300 years. As before, higher risks within each category were tied to smaller carrying capacities and greater threats of catastrophic events.

Status of Other Killer Whale Communities in the Northeastern Pacific

Population assessments of other regional killer whale population provide useful insight into the status of the Southern Residents and are briefly summarized here.

Northern Residents. As with the Southern Residents, this population was also in a depleted condition when researchers recorded 132 whales during an initial census in 1975. Although count data are not available before this date, modeling by Olesiuk et al. (1990a) suggests that the community expanded from about 97 to 120 whales between 1960 and 1968, then declined by an estimated 10% to about 108 whales by 1970 due to removals for aquaria (Table 5, Figure 14). Causes of declines before 1960 probably resembled those for Southern Residents, with indiscriminate shooting and other human-related factors most likely involved (Olesiuk et al. 1990a).

Annual censuses of the Northern Residents have been conducted since 1975 (Bigg et al. 1990, Ford et al. 2000). These documented fairly steady growth in the population at a mean rate of 3.0% per year from 1975-1997, when numbers expanded from 132 to 220 whales (Table 5, Figure 14) (Ford et al. 2000; J. K. B. Ford, unpubl. data). This rate of growth was similar to the predicted intrinsic rate of the population and was substantially higher than the observed rate of the Southern Residents during the same time (Olesiuk et al. 1990a, Brault and Caswell 1993). Several factors were presented as possible reasons for the relatively stable growth of the Northern Residents through 1997, including 1) the population’s larger size in comparison to the Southern Residents, which made it less sensitive to stochastic events in births and deaths, 2) the smaller amount of cropping that occurred during the live-capture fishery (Olesiuk et al. 1990a), and 3) possibly fewer environmental changes in the community’s geographic range in recent decades. The population experienced an 8.6% decline in numbers from 1997-2001, falling to 201 whales. Possible explanations for this decrease are similar to those put forth for the Southern Residents (J. K. B. Ford, pers. comm.). Abundance has rebounded since then, with 219 whales counted in 2004 (Olesiuk et al. 2005). PVAs have not been conducted for this population.
Southern Alaska Residents. In contrast to the losses experienced by AB pod after the Exxon Valdez oil spill (see Incidental human-related mortality), most pods in this community have steadily expanded in size since 1984, when annual censuses began (Matkin et al. 2003, C. O. Matkin unpubl. data). Count data exist for 11 pods in which membership is completely known. Excluding AB pod, the aggregate number of whales in seven pods from Prince William Sound and Kenai Fjords increased from 82 to 134 animals between 1984 and 2004, with five pods growing and two maintaining their size. Three other pods primarily inhabiting southeastern Alaska expanded from a total of 39 animals to 95 animals during this period. The combined annual growth rate for these 10 pods averaged 4.5% per year, greatly exceeding that recorded for the Northern Residents from the mid-1970s to late 1990s and the Southern Residents during the 1970s and from the mid-1980s to mid-1990s. Differences in the reproductive lifespan of females and calf output probably explain this greater rate of growth (Matkin et al. 2003). AB pod reversed its decline in 1996 and is now also slowly increasing (Matkin et al. 2003, C. O. Matkin unpubl. data). Although census data are incomplete for other pods in the population, the current total size of the Southern Alaska Resident community is estimated to number at least 501 whales (Angliss and Outlaw 2005; C. O. Matkin, unpubl. data). The population’s strong overall growth rate since 1984 suggests that the community has either been recovering from an artificially depleted condition that existed when censuses began.
or that environmental conditions (e.g., salmon abundance) have improved since the mid-1980s (Matkin et al. 2003). Like with the southern and Northern Residents, a slight decline in abundance was detected among the seven pods from Prince William Sound and Kenai Fjords in the late 1990s. Numbers fell from 114 to 107 whales (6.1%) from 1998 to 1999, but have shown robust growth each year since then (Matkin et al. 2003; C. O. Matkin, unpubl. data). No similar decline was noted in the other four pods.

Western Alaska Residents. Based on photo-identification studies, the minimum size of this population has been variously listed as 505 whales (Angliss and Outlaw 2005) and 800 whales (Krahn et al. 2004a). An additional estimate of 991 (95% CI = 379-2,585) whales has been made using line transect methods (Zerbini et al. 2006). Population trend data are unavailable.

West coast transients. This community also suffered serious prey losses between the late 1800s and late 1960s, and very likely experienced a sizable decrease in abundance as a result (Ford and Ellis 1999, Springer et al. 2003). During this period, overhunting caused dramatic declines or extirpations in pinniped and large whale populations along much of western North America. By about 1970, it is estimated that harbor seal and Steller’s sea lion populations in British Columbia had fallen to about 10% and 25-33%, respectively, of historic levels (Olesiuk et al. 1990b, Ford and Ellis 1999). Similar reductions in pinniped numbers occurred elsewhere between southeastern Alaska and California (Scammon 1874, Bonnot 1951, Newby 1973, Jeffries et al. 2003, Brown et al. 2005). Many large whale populations have also severely declined and have never recovered (Scheffer and Slipp 1948, Rice 1974, Gregr et al. 2000, Springer et al. 2003, Carretta et al. 2004). However, seal numbers in the region have grown 7 to 12-fold since about 1970 and are now close to or at carrying capacity (Olesiuk 1999, Jeffries et al. 2003). Recovery of the gray whale population (NMFS 1993) and partial recovery of regional humpback whale populations have also occurred (Carretta et al. 2004). With the recovery of some pinniped populations, Ford et al. (2000) believed that transient whales no longer face a scarcity of prey.

Cumulative numbers of photographically identified west coast transients expanded throughout the 1980s and 1990s as efforts to document the population continued (Bigg et al. 1987, Black et al. 1997, Ford and Ellis 1999). To date, about 320 individuals have been identified in the population, which includes about 225 transients in Washington, British Columbia, and southeastern Alaska (Ford and Ellis 1999; J. K. B. Ford, unpubl. data) and 105 animals off California (Black et al. 1997). At least 10 whales have been seen in both regions. Efforts to determine population size are complicated by the lack of a complete registry of individuals and the difficulty in establishing deaths over time (Ford and Ellis 1999, Baird 2001, Angliss and Outlaw 2005). Given the current level of knowledge, the population probably totals about 300-400 whales. Trend information is lacking for the population because accurate assessments of abundance have not been made.

Gulf of Alaska transients. Photo-identification data from the late 1990s to 2003 suggest that this community contains a minimum of 314 whales (Angliss and Outlaw 2005). Zerbini et al. (2006) estimated a population size of 251 (95% CI = 97-644) animals based on line transect analyses. Population trend is unknown.
AT1 transients. This pod numbered 21 whales in 1988, but went into rapid decline after the Exxon Valdez oil spill in early 1989 and fell to just 11 members by 1992 (Matkin et al. 1999, Matkin et al. 2003, NMFS 2003). Additional deaths and a lack of births since 1984 have further reduced the pod’s size to no more than seven whales as of 2005 (C. O. Matkin, unpubl. data).

Offshores. Two partial population estimates are available for offshore killer whales, but are not directly comparable because of differences in methodology and geographic coverage. Carretta et al. (2004) calculated a minimum estimate of 361 offshore whales along the coasts of Washington, Oregon, and California, as determined from shipboard line-transect surveys conducted in 1996 and 2001 and the percentage of offshore animals among all killer whales photographed off California (Black et al. 1997). Based on photo-identification studies from 1989 to 2004, 350 individual whales have been recorded in California and Alaska waters (M. E. Dahlheim, unpubl. data). This figure is considered a minimum estimate of total numbers due to the continued detection of new individuals over time and because photographic records from British Columbia, Washington, and Oregon were not included in the analyses (M. E. Dahlheim, pers. comm.). Difficulties in substantiating mortalities and recognizing previously identified individuals not seen for long periods further complicate efforts to determine the size of this community using this technique.

G. EXISTING PROTECTIVE MEASURES

Federal laws. Killer whales and other marine mammal populations in the United States are protected under the Marine Mammal Protection Act of 1972 (MMPA), which placed a moratorium on the taking (defined as harassing, hunting, capturing, killing, or attempting to harass, hunt, capture, or kill) and importation of these animals and products derived from them. The MMPA exempts harvest of marine mammals by Alaska Natives for subsistence purposes or for creating and selling handicrafts, but there is no current subsistence or handicraft harvest for killer whales. Some incidental take associated with commercial fisheries is also allowed. Under the MMPA permits may be issued for research, public display, and commercial/educational photography. Based on a review of the best scientific information available, consultation with the Marine Mammal Commission, and consideration of public comment, NMFS designated the Southern Resident killer whales as a depleted stock under the MMPA in May 2003 and announced the intention to prepare a conservation plan (NMFS 2003b). A designation of depleted status requires that the agency prepare a conservation plan for the purpose of conserving and restoring the stock to its optimum sustainable population. In July 2004, the AT1 transient stock of killer whales in Alaska was also designated as a depleted stock under the MMPA (NMFS 2004a).

In response to a petition filed by a number of environmental organizations in 2001 (Center for Biological Diversity 2001), NMFS determined that listing the Southern Residents as threatened or endangered under the ESA was “not warranted” because the population did not meet the criteria of being a distinct population segment (DPS) of the worldwide killer whale taxon (Krahn et al. 2002, NMFS 2002). This decision was challenged in December 2003, and in December of that year a U.S. District Court in Seattle, WA remanded the decision to NMFS to re-evaluate its initial determination. The Biological Review Team (BRT) was reconvened to consider new information and update the status review for Southern Residents. Upon review of the BRT reports, co-manager comments, papers and reports of a cetacean taxonomy workshop, and other available published and
unpublished information, NMFS determined in December 2004 that the Southern Residents are
discrete and significant with respect to an unnamed subspecies of killer whales (North Pacific
Residents), and proposed that the DPS be listed as a threatened under the ESA (NMFS 2004b).
NMFS subsequently listed the Southern Resident DPS as endangered (NMFS 2005, 70 FR 69903).
The ESA protects threatened and endangered species in several ways. An endangered listing
includes prohibitions of take of listed species (there is a similar take prohibition under the MMPA).
Under section 7 of the ESA, all federal agencies must insure that any actions they authorize, fund,
or carry out are not likely to jeopardize the continued existence of a listed species, or destroy or
adversely modify its designated critical habitat. Consultations occur with federal action agencies
under section 7 of the ESA to avoid, minimize or mitigate impacts of their activities on listed
species. NMFS is currently engaged in consultations with federal agencies regarding a variety of
construction, transportation, fishery management and other federal projects. Federal agencies
should use the information in the recovery plan to develop Biological Assessments for projects and
evaluate the effects of actions. The recovery plan will also serve as a mechanism to coordinate
section 7 consultations and ensure they are consistent with recovery. NMFS also reviews non-
federal activities that may affect species listed under the ESA, and issues permits under Section 10
for incidental take of those species and for scientific research and enhancement purposes.

NMFS recently designated critical habitat for Southern Resident killer whales (See Habitat Use). In
June 2006 NMFS proposed critical habitat (NMFS 2006a, 71 FR 34571), received comments and
addressed those comments in the final rule. The ESA requires that NOAA and the U.S. Fish and
Wildlife Service designate critical habitat for species that have been listed as threatened or
endangered. In so doing, the agencies must use the best scientific information available, in an open
public process, within specific timeframes. Before designating critical habitat, careful consideration
must be given to the economic impacts, impacts on national security, and other relevant impacts of
specifying any particular area as critical habitat. The Secretary of Commerce may exclude an area
from critical habitat if the benefits of exclusion outweigh the benefits of designation, unless
excluding the area will result in the extinction of the species concerned. The ESA defines critical
habitat as specific areas: 1) within the geographical area occupied by the species at the time of
listing, if they contain physical or biological features essential to conservation, and those features
may require special management considerations or protection; and 2) outside the geographical area
occupied by the species if the agency determines that the area itself is essential for conservation.
Based on the natural history of the Southern Residents and their habitat needs, we identified the
following physical or biological features essential to conservation: (1) Water quality to support
growth and development; (2) Prey species of sufficient quantity, quality and availability to support
individual growth, reproduction and development, as well as overall population growth; and (3)
Passage conditions to allow for migration, resting, and foraging. We held public meetings and
reviewed all comments and new information provided by the public and other reviewers, and then
incorporated minor revisions into the final designation. We designated three specific areas, (1) the
Summer Core Area in Haro Strait and waters around the San Juan Islands; (2) Puget Sound; and (3)
the Strait of Juan de Fuca, which comprise approximately 2,560 square miles of marine habitat
within the area occupied by Southern Resident killer whales in Washington (Figure 7). Section 7 of
the ESA requires all Federal agencies to ensure their actions are not likely to destroy or adversely
modify the designated habitat. Another benefit of designation is that it provides notice of areas and

November 2006 69 NMFS
features important to species conservation, and information about the types of activities that may reduce the conservation value of the habitat, which can be effective for education and outreach.

Cetaceans also receive protection through observer programs aimed at monitoring and reducing bycatch, including marine mammals. The authority to place observers on commercial fishing and processing vessels operating in particular fisheries is provided by the MMPA or the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). These two acts require the government to collect data on activities which affect marine resources. Many of the programs also satisfy requirements of the ESA. The Pelly Amendment of the Fisherman’s Protective Act allows trade sanctions to be imposed on countries that violate international laws protecting marine mammals. The importation of wildlife and associated products taken illegally in foreign countries is prohibited under the Lacey Act.

In addition to regulations there are voluntary guidelines to inform the public on best practices for viewing whales. Guidelines for viewing killer whales in the wild were developed under the MMPA in 1981 to advise boaters on how to watch whales without impacting their behavior or causing harassment. The guidelines have been modified over the years to reflect new information on vessel activities that may affect the whales. By following the guidelines, boaters can view the whales in their natural environment without violating the MMPA or ESA.

Canadian federal laws. Killer whales received federal protection from disturbance under Canada’s Marine Mammal Regulations (MMR) of the Fisheries Act in 1994, when a change in definitions extended coverage to all cetaceans and pinnipeds (Baird 2001). Although these regulations allow killer whales to be hunted with the purchase of a fishing license, the license is granted at the discretion of the Minister of Fisheries and Oceans and no such licenses have ever been approved. The regulations broadly prohibit the disturbance of killer whales (except when being hunted), but give no definition of “disturbance.” Penalties include fines and imprisonment. Fisheries and Oceans Canada is currently proposing to amend the existing MMR (Fisheries and Oceans Canada 2002, Lien 2001). Amending the MMR will ensure that all Canadians clearly understand their responsibilities with regard to protecting marine mammals and that DFO has the tools to fulfill its mandate. As part of the regulatory amendment process, the Department is conducting consultations with the public to receive input and feedback on the proposed changes. The department has also participated in development of a set of voluntary trans-boundary guidelines to limit interactions between whale-watching vessels and resident killer whales. Until recently, there has been limited enforcement of the Marine Mammal Regulations or monitoring of the viewing guidelines by authorities (Baird 2001, Lien 2001). However, DFO has supported the Marine Mammal Monitoring group in recent years, and in 2004, an American whale-watching operator was prosecuted under the Marine Mammal Regulations and fined CA$6,500 (US$4,875) for approaching two groups of Southern Resident whales too closely in the Gulf Islands.

In 2001, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) categorized the four populations of killer whales in the country’s Pacific waters, as follows: Southern Residents, endangered; Northern Residents, threatened; transients, threatened; and offshores, special concern. COSEWIC had no legal mandate and served only in an advisory role. The Species at Risk Act (SARA) became federal law in June 2003, with killer whale populations maintaining their same
status as under COSEWIC. Under this regulation, the killing, harassment, and possession of killer whales are prohibited. Important habitats of the whales will also receive protection. SARA requires the preparation of recovery strategies and action plans for all listed species. A recovery team was established which contains both Canadian and U.S. representatives, including NMFS staff. The team released a draft National Recovery Strategy for Northern and Southern Resident Killer Whales in March 2005 (Killer Whale Recovery Team 2005), which will be followed by a final recovery strategy and an action plan identifying necessary conservation activities.

Washington state laws. Killer whales were named a “state candidate species” by the Washington Department of Fish and Wildlife in June 2000, which qualified them for consideration as endangered, threatened, or sensitive under state law (Washington Administrative Code [WAC] 232-12-011 and 232-12-014). After an evaluation by the Department (Wiles 2004), the state’s Fish and Wildlife Commission approved listing of the species as endangered in April 2004, with formal designation occurring in June 2004. All forms of killer whale found in the state (i.e., residents, transients, and offshores) are protected under the law. This prohibits the hunting, possession, malicious harassment, and killing of killer whales (RCW 77.15.120). Violations can be either a gross misdemeanor or a class C felony, with penalties ranging up to five years imprisonment and a $10,000 fine. The species also receives protection under WAC 232-12-064, which prohibits the capture, importation, possession, transfer, and holding in captivity of most wildlife in state. Killer whales are listed as a “Criterion Two” priority species on the Department’s Priority Habitat and Species List, which catalogs animals and plants that are priorities for conservation and management, especially at the county level. Criterion Two species include those species or groups of animals susceptible to significant population declines within a specific area or statewide by virtue of their inclination to aggregate. This status provides no mandatory protection for killer whales. In some situations, federal laws may preempt the regulatory protections provided by state governments. Killer whales were designated as the official marine mammal of the State of Washington in 2005.

Other state and provincial laws. Although not specifically named, killer whales are covered under state regulations in Oregon (OAR 635-044-0130) and California (CF&G code, section 4500(a)) that protect all marine mammals from being killed, hunted, chased, or possessed. Neither the province of British Columbia nor the State of Alaska gives special legal protection to killer whales.

International laws. International trade in killer whales and their body parts is regulated and monitored by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Killer whales were placed on the CITES Appendix II in 1979, which requires all international shipments of the species to be accompanied by an export permit issued by the proper management authority of the country of origin. The International Whaling Commission categorizes killer whales and most other odontocetes as “small cetaceans,” but there is disagreement among member countries as to whether the Convention applies to this group of species. The Commission officially included killer whales in their moratorium on factory ship whaling (Anonymous 1981), but other management measures (e.g., the Southern Ocean Sanctuary and the moratorium on commercial whaling) do not apply to killer whales (Baird 2001). In 2002, killer whales were added to Appendix II of the U.N. Convention on the Conservation of Migratory Species of Wild Animals. This designation is given to migratory species that “have an unfavorable conservation status and require international agreements for their conservation and management, as well as those which
have a conservation status which would significantly benefit from the international cooperation that could be achieved by an international agreement.” The World Conservation Union (IUCN) lists killer whales as a species of “Lower Risk/Conservation Dependent” on its Red List.

H. POTENTIAL THREATS TO SOUTHERN RESIDENT KILLER WHALES

Marine mammal populations are often exposed to many forms of environmental degradation, including habitat deterioration, changes in food availability, increased exposure to pollutants, and human disturbance. All of these factors have been identified as potential threats to killer whales in Washington and British Columbia (Ford and Ellis 1999, Ford et al. 2000, Baird 2001, Krahn et al. 2002, 2004a, Taylor 2004, Wiles 2004). Unfortunately, despite much study since the early 1970s and great advances in knowledge of the species, researchers remain unsure which threats are most significant to the region’s killer whales.

Section 4(a)(1) of the ESA and the listing regulations (50 CFR part 424) set forth considerations for listing species. We must list a species if it is endangered or threatened because of any one or a combination of the following factors: (1) the present or threatened destruction, modification, or curtailment of its habitat or range; (2) overutilization for commercial, recreational, scientific, or educational purposes; (3) disease or predation; (4) inadequacy of existing regulatory mechanisms; or (5) other natural or human-made factors affecting its continued existence.

The 2004 BRT identified the factors that currently pose a risk for Southern Residents and discussed whether these might continue in the future. Important concerns included (1) reductions in quantity or quality of prey, (2) high levels of organochlorine contaminants and increasing levels of many “emerging” contaminants (e.g., brominated flame retardants), putting Southern Residents at risk for serious chronic effects similar to those demonstrated for other marine mammals (e.g., immune and reproductive system dysfunction), (3) sound and disturbance from vessel traffic, and (4) oil spills. Below, we discuss the various threats that have been identified, organized around the five listing factors that we addressed in our determination to list Southern Residents under the ESA. We then discuss the major factors in more detail.

Present or Threatened Destruction, Modification, or Curtailment of Habitat or Range. Several factors have modified the Southern Residents’ habitat, including contaminants, vessel traffic, and changes in prey availability. Salmon populations have declined due to degradation of aquatic ecosystems resulting from modern land use changes (e.g., agriculture, hydropower, urban development), harvest and hatchery practices. Since the early 1990s, 27 evolutionarily significant units (ESUs) of salmon and steelhead in Washington, Oregon, Idaho, and California have been listed as threatened or endangered under the ESA. Reductions in prey availability may force the whales to spend more time foraging and could lead to reduced reproductive rates and higher mortality.

Despite the enactment of modern pollution controls in recent decades, studies have documented high levels of PCBs in Southern Resident killer whales (Ross et al., 2000, Ylitalo et al., 2001). These and other chemical compounds have the ability to induce immune suppression, reproductive impairment, and other physiological effects, as observed in studies of other marine mammals. In
addition, high levels of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs; flame retardants), that may have similar negative effects have been found in killer whales and have an expanding presence in the environment (Rayne et al., 2004).

Commercial shipping, whale watching, ferry operations, and recreational boating traffic have expanded in recent decades. Several studies have linked vessels with short-term behavioral changes in northern and Southern Resident killer whales (Kruse 1991, Kriete 2002, Williams et al. 2002a, 2002b, Foote et al. 2004). Potential impacts from vessels and sound are poorly understood and may affect foraging efficiency, communication, and/or energy expenditure through physical presence or increased underwater sound levels or both. Collisions with vessels are also a potential source of injury.

Overutilization for commercial, recreational, scientific, or educational purposes. The capture of Southern Resident killer whales for public display during the 1970s likely depressed their population size and altered the population characteristics sufficiently to severely affect their reproduction and persistence (Olesiuk et al. 1990a). However, there have not been any removals for public display since the 1970s. Whale watching can be considered a form of utilization of Southern Resident killer whales. Under existing prohibitions on take under the MMPA, commercial and recreational whale watching must be conducted without causing harassment of the whales. While NMFS, commercial whale watch operators, and nongovernmental organizations have developed guidelines to educate boaters on how to avoid harassment, there are still concerns regarding compliance with the guidelines and potential violations of the MMPA, increased numbers of vessels engaged in whale watching, and cumulative effects on the whales.

Disease or Predation. While disease has not been implicated in the recent decline of Southern Resident killer whales, high contaminant levels may affect immune function in the whales, increasing their susceptibility to disease. The cohesive social structure and presence of all whales in a localized area at one time also has implications should a disease outbreak occur.

Inadequacy of Existing Regulatory Mechanisms. Current levels of contaminants in the environment indicate that previous regulatory mechanisms were not sufficient to protect killer whales. While the use of PCBs and DDT is prohibited under existing regulations, they persist in the environment for decades and are also transported via oceans and the atmosphere from areas where their use has not been banned. In addition, there are new emerging contaminants that may have similar negative effects that are not currently regulated.

Other Natural or Human-Made Factors Affecting Continued Existence

Due to its proximity to Alaska’s crude oil supply, Puget Sound is one of the leading petroleum refining centers in the U.S. with about 15 billion gallons of crude oil and refined petroleum products transported through it annually (Puget Sound Action Team 2005a). In marine mammals, acute exposure to petroleum products can cause changes in behavior and reduced activity, inflammation of mucous membranes, lung congestion, pneumonia, liver disorders and neurological damage (Geraci and St. Aubin 1990). The *Exxon Valdez* oil spill was identified as a potential source of mortality for resident and transient killer whales in Prince William Sound, Alaska (Dahlheim and Matkin 1994, Matkin et al. 2003) and has raised concerns about potential implications for Southern
Residents, particularly if the entire population is together in the vicinity of a spill. In addition, there may be additional anthropogenic factors that have not yet been identified as threats for Southern Resident killer whales, particularly in their winter range which is not well known.

Overall, the BRT was concerned about the viability of the Southern Resident DPS and concluded that it is at risk of extinction because of either small-scale impacts over time (e.g., reduced fecundity or subadult survivorship) or a major catastrophe (e.g., disease outbreak or oil spill). Additionally, the small population size of this killer whale DPS makes it potentially vulnerable to Allee effects (e.g., inbreeding depression) that could cause a further decline. The small number of breeding males, as well as possible reduced fecundity and subadult survivorship in the L-pod, may limit the population’s potential for rapid growth in the near future. Although the Southern Resident DPS has demonstrated the ability to recover from lower levels in the past and has shown an increasing trend over the last several years, the factors responsible for the decline are unclear (NMFS 2002, NMFS 2004). These factors may still exist and may continue to persist, which could potentially preclude a substantial population increase.

The primary risk factors are discussed in greater detail below: prey availability, environmental contaminants, and vessel effects and sound. All of the factors considered in listing and potentially affecting recovery of Southern Resident killer whales are summarized in Table 6, which includes assessments of severity, likelihood and feasibility of mitigation. None have yet been directly tied to the recent decline of the Southern Resident population (Krahn et al. 2002), but continued research should provide further insight into relationships. Perhaps most likely, two or more of these factors may be acting together to harm the whales (Ford et al. 2005b, see Sih et al. 2004). An example of how cumulative effects of multiple factors might be affecting whales would be vessel effects when combined with the stresses of reduced prey availability or increased contaminant loads (Williams et al. 2002a). Under such a scenario, reduced foraging success resulting from effects of vessels and declining salmon abundance may lead to chronic energy imbalances and poorer reproductive success, or all three factors may work to lower an animal’s ability to suppress disease.

Table 6. Factors considered in listing and potentially affecting recovery of Southern Resident killer whales.

<table>
<thead>
<tr>
<th>Threat</th>
<th>Listing Factors</th>
<th>Severity</th>
<th>Likelihood</th>
<th>Feasibility of Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prey availability</td>
<td>Habitat</td>
<td>Potentially High</td>
<td>High</td>
<td>High, many salmon recovery efforts underway</td>
</tr>
<tr>
<td>Contaminants</td>
<td>Habitat, Inadequacy of Existing Regulations</td>
<td>Potentially High</td>
<td>High</td>
<td>Medium, Puget Sound clean-up efforts underway</td>
</tr>
<tr>
<td>Vessel effects</td>
<td>Habitat, Overutilization, Inadequacy of Existing Regulations</td>
<td>Potentially High</td>
<td>High</td>
<td>High, Whale watching guidelines and outreach underway, NOAA evaluate regulations and/or protected areas</td>
</tr>
<tr>
<td>Sound</td>
<td>Habitat, Inadequacy of Existing Regulations</td>
<td>Medium-Potentially High</td>
<td>High</td>
<td>Medium, MMPA and ESA mechanisms in place</td>
</tr>
</tbody>
</table>
Prey Availability

Healthy killer whale populations are dependent on adequate prey levels. Reductions in prey availability may force whales to spend more time foraging and might lead to reduced reproductive rates and higher mortality rates. Human influences have had profound impacts on the abundance of many prey species in the northeastern Pacific during the past 150 years. Foremost among these, many stocks of salmon have declined significantly due to overfishing, poor artificial propagation practices, and degradation of freshwater and estuarine habitats through urbanization, dam building, and forestry, agricultural, and mining practices (National Research Council 1996, Slaney et al. 1996, Gregory and Bisson 1999, Lackey 2003, Pess et al. 2003, Schoonmaker et al. 2003). Populations of some other known or potential prey species, such as marine mammals and various fish, have similarly declined or fluctuated greatly through time. Status assessments of the food resources available to killer whales in the region are complicated by numerous considerations, including a lack of detailed knowledge on the food habits and seasonal ranges of killer whales, uncertainties in the historical and current abundance levels of many localized populations of prey, and the cyclic nature of large-scale changes in ocean conditions.

Current data suggest that Chinook salmon, the region’s largest salmonid, are the most commonly targeted prey of resident killer whales in Washington and British Columbia between late spring and early fall (Ford et al. 1998, Hanson et al. 2005, Ford and Ellis 2006). Other salmonids appear to be eaten less frequently, as are some non-salmonids such as rockfish, halibut, lingcod, and herring. Unfortunately, less than 125 feeding observations have been reported for the Southern Residents, and therefore, conclusions about their diet are preliminary. Furthermore, few feeding data exist for the winter months or for whales found away from inland waters. There has also been a reliance on surface feeding observations, which may underrepresent predation on bottom fish or other species. Further complicating an adequate understanding of Southern Resident-prey relationships is the possibility of dietary differences among pods and between sexes (Nichol and Shackleton 1996, Ford et al. 1998, Baird 2000).

Another poorly understood facet of diet is the extent to which resident killer whales have depended on specific salmon runs, both in the past and currently (Krahn et al. 2002). Several researchers have
compared Southern Resident distribution with salmon sport catch records, but none have attempted to identify targeted runs. The population’s annual presence in the vicinity of the San Juan Islands and Fraser River mouth from late spring to early fall suggests a dependence on salmon returning to this river system (Osborne 1999). This hypothesis is reasonable given the river’s immense production of salmon (Northcote and Atagi 1997) many of which pass through Haro Strait and surrounding waters. Heimlich-Boran (1986) correlated killer whale occurrence with salmon sport catch in the San Juan Islands and portions of Puget Sound, but did not describe the species or runs selected. Felleman et al. (1991) added that some small-scale winter occurrences of the whales were related to the presence of juvenile Chinook, adult steelhead, and adult cutthroat trout (Salmo clarkii). Autumn movements of Southern Resident pods into Puget Sound roughly correspond with chum and Chinook salmon runs (Osborne 1999), as illustrated by the presence of whales in Dyes Inlet during a strong run of chum in 1997. Two California sightings and one off Westport, Washington, have coincided with large runs of Chinook salmon (K. C. Balcomb, unpubl. data; M. B. Hanson, pers. obs., in Krahn et al. 2004a). Northern Resident occurrence in Johnstone Strait has been tied to the large seasonal runs of sockeye and pink salmon, as well as chum salmon to a lesser extent (Nichol and Shackleton 1996), but new information indicates that linkages with sockeye and pink occurrence are coincidental (Ford and Ellis 2006).

Two recent studies have examined the relationships between salmon abundance and population dynamics of resident killer whales and support the belief that Chinook and chum salmon are most important to the Southern Residents. Both studies, however, are limited by incomplete data on salmon occurrence and year-round range use by the whales. Environmental factors common to both Southern Residents and salmon may also be driving the findings rather than direct predator-prey relationships. Ford et al. (2005b) compared survival rates of northern and Southern Resident killer whales with measures of Chinook abundance from Alaska to Oregon derived from the Pacific Salmon Commission Chinook model for the 1970’s to about 2004. They reported a strong positive correlation between changes in overall coast wide Chinook abundance and combined mortalities of both resident communities. On a local scale, Ford et al. (2005b) found a weak correlation between Southern Resident survival and abundance of Washington and Oregon Chinook (R²=.115). A weakly significant correlation between birth rates in both populations and coast-wide Chinook abundance was also detected.

Mccluskey (2006) compared population trends for Southern Residents to total run size estimates and escapement for five species of salmon in Washington and the Fraser River from the 1970’s to about 2005. Mccluskey reported a significant positive correlation between the Southern Resident population trend and early chum, normal chum and Chinook runs. On a regional scale based on regions of escapement, the chum in all regions, Chinook in the Strait of San Juan de Fuca, Central and South Puget Sound, and Fraser River sockeye were the most significantly associated with the Southern Resident community. Mccluskey (2006) also reported that all three pods showed reduced movements from late spring to fall during the early 1990s, when overall salmon abundance was higher and the Southern Resident population was increasing, as compared to the late 1990s, when salmon were less abundant and the whale population was decreasing, thereby implying that a scarcity of salmon caused the whales to forage more widely. Chinook abundance was generally low throughout the decade.
Without better knowledge of selected salmon runs, the effects on resident killer whales of changing salmon abundance in key runs cannot be fully evaluated. In former times, these whales may have simply moved to other areas with adequate food or shifted their diets to alternate fish stocks in response to the reduction of a heavily used run (Ford et al. 2000). These options may be less viable now due to broader declines of various fish populations in the region.

As already noted, there is an absence of comprehensive and accurate estimates of salmon abundance for significant portions of the ranges of southern and Northern Residents. In many cases, salmon population estimates from the 1800s to mid-1900s are crude or non-existent. Furthermore, estimates originate from a variety of sources and methods (i.e., catch data, escapement, or both) and therefore may not be comparable among or within locations (Bisson et al. 1992). Some include both wild and hatchery fish, whereas others tallied only one of these groups. Substantial interannual variability is also inherent in many stocks. Finally, concise summaries of specific run size information can be dauntingly difficult to locate within fisheries agency records. Despite these limitations, some general trends are apparent. Of greatest significance are the overall major reductions in the natural breeding populations of most species between the 1800s to mid-1900s (Table 7, Krahn et al. 2002, 2004). Many runs have continued to decrease since then, but others have partially recovered. Declines are particularly prevalent in Washington, Oregon, Idaho, California, and southern British Columbia due to greater human impacts on freshwater and estuarine habitats as well as ocean productivity cycles, whereas populations in Alaska have been little affected (Riddell 1993, Slaney et al. 1996, Nehlsen 1997, Wertheimer 1997, Yoshiyama et al. 1998, Kope and Wainwright 1998, Lackey 2003, Schoonmaker et al. 2003). Among naturally spawning salmon, 30 of the 49 ESUs in the western contiguous U.S. are currently listed as threatened or endangered, or are candidates for listing under the federal Endangered Species Act (www.nwr.noaa.gov). Half or more of all Chinook, steelhead, and chum ESUs are listed. Some of the remaining 19 ESUs are predicted to become endangered unless specific recovery actions can be accomplished. Despite this overall pattern, an assessment of natural salmon stocks in Washington during the late 1980s and early 1990s found that of 309 stocks with sufficient data to assess current status, 60.5% were in fact healthy and 39.5% were depressed or of critical status (WDF et al. 1993). A disproportionately greater number of healthy stocks were located in Puget Sound, whereas more depressed and critical stocks occurred in the Columbia River basin.

Many wild salmon runs have been supplemented by significant numbers of hatchery-reared salmon since the 1950s and 1960s, when modern hatchery programs began being widely implemented (Mahnken et al. 1998). In Washington, hatchery fish now account for about 75% of all Chinook and coho salmon and nearly 90% of all steelhead harvested. In Puget Sound and the Strait of Georgia, the amounts of artificially reared salmon are variable with species, but significant numbers of hatchery Chinook and coho are present in many runs (e.g., Sweeting et al. 2003). The extent that resident whales consume hatchery salmon is poorly understood, but hatchery fish are known to be consumed (J. K. B. Ford, unpubl. data) and may represent an important part of the diet for Southern Residents.
Table 7. Summary of historical and recent estimates of salmon numbers (in thousands) produced by western North American river systems between the Strait of Georgia and central California.a

<table>
<thead>
<tr>
<th>Region</th>
<th>Period of time</th>
<th>Chinook</th>
<th>Pink</th>
<th>Coho</th>
<th>Chum</th>
<th>Sockeye</th>
<th>Steelhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraser</td>
<td>Late 1800s to mid-1900s</td>
<td>750b</td>
<td>23,850b</td>
<td>1,230b</td>
<td>800b</td>
<td>925-40,200c</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Mid-1900s to early 1980s</td>
<td>150b</td>
<td>1,900-18,700d</td>
<td>160b</td>
<td>390b</td>
<td>967-18,800c</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Mid-1980s to early 1990s</td>
<td>140-280e</td>
<td>7,200-22,180d</td>
<td>40-100b</td>
<td>1,300f</td>
<td>3,770-22,000c</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>140-350e</td>
<td>3,600-21,200d</td>
<td>increasingf</td>
<td>13× greater since 1997f</td>
<td>3,640-23,600c</td>
<td>12g</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>Late 1800s to early 1900s</td>
<td>250-700b</td>
<td>1,000-16,000b</td>
<td>700-2,200b</td>
<td>500-1,700b</td>
<td>1,000-22,000b</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Mid-1900s</td>
<td>40-100b</td>
<td>350-1,000d</td>
<td>200-600b</td>
<td>300-600b</td>
<td>92-622d</td>
<td>>41l</td>
</tr>
<tr>
<td></td>
<td>Mid-1980s to early 1990s</td>
<td>80-140d</td>
<td>1,000-1,930d</td>
<td>300-800d</td>
<td>1,040-2,030d</td>
<td>37-555d</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>118-280m</td>
<td>440-3,550d</td>
<td>200-500b</td>
<td>570-3,390d</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>Coastal</td>
<td>Mid- to late 1800s</td>
<td>190n</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Washington</td>
<td>Mid-1900s</td>
<td>nd</td>
<td>80-100d</td>
<td>20-130d</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Mid-1980s to early 1990s</td>
<td>30-115i</td>
<td>40-130i</td>
<td>10-325i</td>
<td>15-80i</td>
<td>25-50i</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>50-65i</td>
<td>30-70i</td>
<td>60-175i</td>
<td>20-80i</td>
<td>30-40i</td>
<td>nd</td>
</tr>
<tr>
<td>Columbia</td>
<td>Mid- to late 1800s</td>
<td>4,800-9,200o</td>
<td>900-1,780o</td>
<td>540-1,390o</td>
<td>2,600-2,840o</td>
<td>570-1,350o</td>
<td>nd</td>
</tr>
<tr>
<td>River</td>
<td>Mid-1900s</td>
<td>564-1,412p</td>
<td>21-786p</td>
<td>1-426p</td>
<td>11-335p</td>
<td>252-438p</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Mid-1980s to early 1990s</td>
<td>483-1,237p</td>
<td>262-1,575p</td>
<td>1-5p</td>
<td>47-200p</td>
<td>292-559p</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>382-642p</td>
<td>89-624p</td>
<td>1-5p</td>
<td>9-94p</td>
<td>240-428p</td>
<td>nd</td>
</tr>
<tr>
<td>Mid- to northern</td>
<td>1900</td>
<td>300-600s</td>
<td>1,700s</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Oregon</td>
<td>Early 1990s to current</td>
<td>nd</td>
<td>nd</td>
<td>13s</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Northern</td>
<td>Mid- to late 1800s</td>
<td>300s</td>
<td>1,200f</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>California</td>
<td>Mid-1980s to early 1990s</td>
<td>nd</td>
<td>13s</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>ca 10-50s</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Central</td>
<td>Mid- to late 1800s</td>
<td>1,000-2,000o</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Valley,</td>
<td>Mid-1900s</td>
<td>117--612w</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>California</td>
<td>Mid-1980s to early 1990s</td>
<td>137-387w</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Early 1990s to current</td>
<td>125--415w</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

a Estimates may represent catch data, escapement, or estimated run size, and therefore may not be comparable between or within sites. Some estimates include hatchery fish. Early catch records for sockeye and pink salmon in Puget Sound are especially problematic because they include Fraser River salmon caught by American fishermen and landed in Puget Sound ports (J. Ames, pers. comm.). Periods without data for particular species are represented by “nd.”

b Northcote and Atagi (1997); catch and escapement; cI. Guthrie (unpubl. data); dB. White (unpubl. data); e DFO (1999); catch and escapement; f DFO (2001); g Simon Fraser University (1998); h Bledsoe et al. (1989), catch only; i Johnson et al. (1997b), wild run sizes only; j J. Ames (unpubl. data); k WDFW (2004); l Busby et al. (1996); m B. Sanford (unpubl. data), adult run size only, including both wild and hatchery fish, but excluding spring Chinook; n Myers et al. (1998); o Northwest Power Planning Council (1986); p WDFW and ODFW (2002); q Kostow (1997); r Nickelson et al. (1992); s Nicholas and Hankin (1989); t California Department of Fish and Game (1965); u Brown et al. (1994); v Mills et al. (1997); w Yoshiyama et al. (1998).
For Southern Resident killer whales, salmon population levels are particularly important in and around the Georgia Basin and Puget Sound, which are the core areas for these whales during much of the year. Overall salmon abundance in Puget Sound has been roughly stable or increasing for the past several decades, due largely to the strong performance of pink and hatchery produced chum salmon. Both species have been at or near historic levels of abundance for the past 20-25 years (Hard et al. 1996; Johnson et al. 1997; WDFW 2004; J. Ames, unpubl. data). No recent changes in salmon populations are obviously apparent that may be responsible for the decline of L pod.

Population trends of salmon stocks in the range of Southern Resident killer whales are summarized below, along with those of several other known prey species. Brief discussions of additional factors affecting salmon abundance and productivity are also presented. Detailed accounts of the life history of Pacific salmon can be found in Groot and Margolis (1991), with summaries of occurrence in Washington presented in Wydoski and Whitney (2003).

Chinook salmon. Chinook are the least common species of salmon in the northeastern Pacific (Wydoski and Whitney 2003, Riddell 2004). Long- and short-term trends in the abundance of wild stocks are predominantly downward, with some populations exhibiting severe recent declines (Table 7). However, total abundance in Puget Sound, the eastern Strait of Juan de Fuca, and the lower Columbia River basin has been relatively high in recent decades due to production from hatcheries (Myers et al. 1998; B. Sanford, pers. comm.). All spring-run populations in these areas are depressed. Many of the formerly vast populations in the mid- to upper Columbia and Snake River basins have declined considerably or virtually disappeared, although some (e.g., fall runs in the upper Columbia) remain moderately large (WDF et al. 1993, Myers et al. 1998, WDFW and ODFW 2002). Total abundance along the Washington and Oregon coasts is relatively high and long-term population trends are generally upward, but a number of runs are experiencing severe recent declines. In British Columbia, Chinook escapements were higher in the 1990s than at any other time dating back to the 1950s, but concern remains over the depressed status of stocks in southern British Columbia (Slaney et al. 1996, Northcote and Atagi 1997, Henderson and Graham 1998, Riddell 2004). The status of stocks from southern Oregon to California’s Central Valley is variable, with a number of runs in poor condition or extirpated (Yoshiyama et al. 2000). Others (e.g., Rogue River, fall runs in the upper Klamath and Trinity Rivers and the Central Valley) remain fairly abundant, although hatchery fish tend to be a large component of the total escapements (Myers et al. 1998, Yoshiyama et al. 2000).

Chum salmon. Chum salmon are abundant and widely distributed in Puget Sound and the Strait of Georgia, and currently comprise the majority of wild salmon in many river systems. Autumn runs are prevalent in both areas. Recent numbers in Puget Sound are at or near historic levels (Table 7), fluctuating between about 0.6 and 2.6 million fish (including hatchery fish) from the early 1980s to 1998 (WDFW 2004). Numbers dropped to fewer than 700,000 fish in 1999 and 2000 due to unfavorable ocean conditions, but rebounded strongly in 2001 and 2002, with run size estimated at nearly 3.4 million fish in 2002 (WDFW 2002, 2004). Hatchery fish comprise 19-47% of the total population in any given year. Although chum abundance in British Columbia is characterized by large annual fluctuations, overall escapements have been slowly increasing since the 1950s (Henderson and Graham 1998). However, numbers remain lower than those observed in the early 1900s (Henderson and Graham 1998). The Columbia River once supported commercial landings of hundreds of thousands of chum salmon, but returning numbers fell drastically in the mid-1950s and
never exceeded 5,000 fish per year in the 1990s (WDFW and ODFW 2002). Stock sizes are variable along the Washington coast, but are low relative to historic levels on the Oregon coast.

Pink salmon. Pink salmon are the most abundant species of Pacific salmon (Wydoski and Whitney 2003) and reach the southern limit of their primary spawning range in Puget Sound. Most odd-year populations in the sound and southern British Columbia appear healthy and current overall abundance is close to historical levels or increasing (Hard et al. 1996; Northcote and Atagi 1997; J. Ames, pers. comm.), whereas even-year runs are naturally small. Numbers in Puget Sound have been high (mean odd year run size = 1.47 million fish, range = 440,000-7.4 million) in most years since at least 1959 (J. Ames, unpubl. data). However, several populations along the Strait of Juan de Fuca and in Hood Canal are declining or possibly extinct. Considerable variation in run size can occur, as seen in the Fraser River, where odd-year runs varied from about 3.6 to 22.2 million between 1991 and 2001 (B. White, unpubl. data). Stocks in Puget Sound and British Columbia are comprised almost entirely of naturally spawning fish.

Coho salmon. Abundance south of Alaska has declined despite the establishment of large hatchery programs (Kope and Wainwright 1998). A number of risk factors, including widespread artificial propagation, high harvest rates, extensive habitat degradation, a recent dramatic decline in adult size, and unfavorable ocean conditions, suggest that many wild stocks may encounter future problems (Weitkamp et al. 1995). Populations supplemented with large numbers of hatchery fish are considered near historical levels in Puget Sound and the Strait of Georgia, with overall trends considered stable (Weitkamp et al. 1995). Natural coho populations in British Columbia have been in decline since the 1960s (Slaney et al. 1996, Northcote and Atagi 1997, Henderson and Graham 1998, Sweeting et al. 2003, Riddell 2004), while those in the lower Columbia River basin and along the coasts of Oregon and northern California are in poor condition (Weitkamp et al. 1995). Most coho in the Strait of Georgia and Columbia basin originate from hatcheries.

Sockeye salmon. Sockeye are the second most common species of salmon in the northeastern Pacific, with spawning populations usually associated with lakes for the rearing of juveniles (Wydoski and Whitney 2003). Only three of Washington’s nine sockeye salmon populations are considered healthy (WDF et al. 1993) and many are naturally small (Gustafson et al. 1997). Declines are especially noticeable in the Columbia basin (Table 7; WDFW and ODFW 2002). From 1993-2002, run size of the introduced stock in the Lake Washington system averaged 230,000 fish (range = 35,000-548,000) (J. Ames, unpubl. data). Sockeye numbers have been recovering in British Columbia since the 1920s (Northcote and Atagi 1997, Henderson and Graham 1998). The Fraser River holds the largest run, usually accounting for more than half of all sockeye production in the province. Huge runs occur cyclically every four years in the river and elsewhere in southern British Columbia, which may have a substantial effect on annual food availability for Southern Resident killer whales. Between 1990 and 2002, run sizes varied from about 3.6 to 23.6 million fish (I. Guthrie, unpubl. data).

Steelhead. More than half of the assessed wild populations in Washington are considered depressed (WDF et al. 1993) and many are declining (Busby et al. 1996). However, stocks throughout the state are heavily supplemented with hatchery fish. Populations are largest in the Columbia River basin (Table 7), where summer runs have generally increased since the 1970s and winter runs have
declined (WDFW and ODFW 2002). Wild coastal steelhead populations are considered healthy in Washington (WDFW 2002), but are largely in decline in Oregon and northern California (Busby et al. 1996). NMFS announced a proposal to list this DPS as "threatened" in March 2006.

Hatchery production. Hatchery production may have partially compensated for declines in many wild salmon populations and therefore has likely benefited resident killer whales to some undetermined extent. However, hatcheries are also commonly identified as one of the factors responsible for the depletion of wild salmon stocks (Sweeting et al. 2003, Gardner et al. 2004). This can occur through a number of processes. One of the most important of these is through mixed stock fishing, wherein wild fish are harvested unsustainably when they co-occur with large numbers of hatchery fish (Gardner et al. 2004). Physical and genetic interactions between wild and hatchery salmon can weaken wild stocks by increasing the presence of deleterious genes (Reisenbichler 1997, Reisenbichler and Rubin 1999). Substantial genetic ingress can occur in native salmon populations, as demonstrated by wild spawning coho salmon in the lower Nooksack and Samish Rivers of Washington, which are now genetically similar to the hatchery fish also present (Small et al. 2004). Competition for food and other resources between hatchery and wild fish may reduce the number of wild fish that can be sustained by the habitat (Flagg et al. 1995, Levin et al. 2001). Predation by hatchery fish and transfer of disease are other mechanisms in which wild populations may be harmed (Gardner et al. 2004).

An additional way in which hatchery production may affect Southern Resident killer whales is through increased chemical contamination of prey. Hatchery policies that encourage longer residency periods in Puget Sound salmon, especially Chinook salmon, may result in substantially higher PCB contamination of the fish (O’Neill et al. 2005).

Salmon size. Many North Pacific populations of five salmon species have declined in physical size during the past few decades (Bigler et al. 1996). For example, mean weights of adult Chinook and coho salmon from Puget Sound have fallen by about 30% and 50%, respectively (Weitkamp et al. 1995; Quinn et al. 2001; B. Sanford, pers. comm.). In the Columbia River, Chinook weighing 50-60 lb were once a small but regular component of runs, but are now a rarity. Decreases in mean weights have also been reported for adult chum (11-40%), pink (20%), and sockeye (6%) salmon (Schoonmaker et al. 2003). Size reductions have been linked to abundance levels and ocean condition (Bigler et al. 1996, Pyper and Peterman 1999), but other factors such as harvest practices, genetic changes, effects of fish culture, and density-dependent effects in freshwater environments attributable to large numbers of hatchery releases may also play a role (Weitkamp et al. 1995). Heavy fishing pressure often produces younger age distributions in populations, resulting in fewer salmon maturing in older age classes and a smaller overall average adult size (Pess et al. 2003; J. Ames, pers. comm.). Hatcheries also have a tendency to produce returning adults that are younger and smaller (B. Sanford, pers. comm.). Reduced body size not only poses a number of risks to natural salmon populations, but may also impact killer whales and other predators. Smaller fish may influence the foraging effectiveness of killer whales by reducing their caloric intake per unit of foraging effort, thus making foraging more costly. A combination of smaller body sizes and declines in many stocks means an even greater reduction in the biomass of salmon resources available to killer whales. Recent mean weights of adult ocean salmon, including both wild and
hatchery fish, are as follows: Chinook, 3.3-8.3 kg; chum, 3.3-4.8 kg; coho, 1.8-3.2 kg; sockeye, 2.6 kg; and pink, 1.5 kg (Schoonmaker et al. 2003).

Salmon body composition. Energy value and possibly nutritional quality differ among salmon species and populations. Osborne (1999) reported the caloric content of five Pacific salmon species as follows: chinook, 2,220 kcal/kg; sockeye, 1,710 kcal/kg; coho, 1,530 kcal/kg; chum, 1,390 kcal/kg; and pink, 1,190 kcal/kg. Regional differences in caloric content have also been described among Chinook salmon populations, with those from Puget Sound having the lowest values among five regions sampled along the North American west coast (O’Neill et al. 2006). These types of differences mean that prey switching from a preferred but declining salmon species to a more abundant alternate species may result in lowered energy intake for resident killer whales. Additionally, Chinook salmon are unique in that spring run fish generally have greater fat concentrations than fall run fish (B. Sanford, pers. comm.). This is due to differences in life history strategies, with spring Chinook needing larger amounts of fat for swimming to spawning sites located farther upstream and to survive their longer residency period in rivers prior to spawning. This means that population reductions in spring Chinook (see Seasonal Availability) may result in the scarcity of a preferred and valuable food item for killer whales.

Salmon distribution. Habitat alteration, hatchery and harvest practices, and natural events have combined to change regional and local patterns of salmon distributions during the past 150 years, but especially since about 1950 (Bledsoe et al. 1989, Nehlsen 1997). Some historically productive populations are no longer large, whereas other runs may have increased in abundance through hatchery production. Limited evidence indicates that hatcheries do not greatly change the pelagic distribution of coho salmon (Weitkamp et al. 1995), but they can strongly influence the nearshore presence of salmon and thus the availability of salmon for predators (Krahn et al. 2002). Within Puget Sound and the Strait of Georgia, it is unknown whether changes in salmon distribution have accompanied long-term changes in abundance. However, salmon distribution is believed to have remained consistent in this region since at least the 1960s. In particular, pink and chum salmon currently occupy nearly all of the habitat that would have been available historically (J. Ames, pers. comm.).

Perhaps the single greatest change in food availability for resident killer whales since the late 1800s has been the decline of salmon in the Columbia River basin. Estimates of predevelopment run size vary from 10-16 million fish (Table 7; Northwest Power Planning Council 1986) and 7-30 million fish (Williams et al. 1999), with Chinook salmon being the predominant species present. Since 1938, annual runs have totaled just 750,000 to 3.2 million fish (WDFW and ODFW 2002). Returns during the 1990s averaged only 1.1 million salmon, representing a decline of 90% or more from historical levels. With so many fish once present, salmon returning to the Columbia River mouth may have been an important part of the diet of Southern Resident whales.

Similarly, California’s Central Valley once supported large numbers of Pacific salmon, but many runs are now severely diminished or gone entirely (Table 7; Yoshiyama et al. 1998, 2000). Chinook salmon were the primary salmonid in this basin as well. Appreciable numbers of Chinook from the Central Valley are known to have migrated northward to Oregon, Washington, and British
Columbia (Yoshiyama et al. 1998), and therefore may have been available as a significant dietary item for the Southern Residents.

Seasonal availability. Even though salmon are currently considered relatively numerous in a number of areas (when hatchery fish are included), patterns of seasonal availability differ from historical patterns in some instances. Thus, resident killer whales may have lost some seasonally important sources of prey, while perhaps gaining others, as seen in the examples that follow. Natural salmon runs throughout the region have always been greatest from August to December, but there may have been more spring and summer runs in the past (J. Ames, pers. comm.). In particular, spring and summer Chinook salmon were abundant in the Columbia River until about the late 1800s (Lichatowich 1999). Populations of spring Chinook have also declined severely in Puget Sound, with most Chinook runs now dominated by later-timed fish, which return to rivers in late summer and fall (B. Sanford, pers. comm.). This problem may be partially offset by the relatively recent presence of “blackmouth” salmon, which are a hatchery-derived form of Chinook that tend to reside year-round in Puget Sound. Through deliberate management programs, these fish have been present in large enough numbers to support a recreational fishing season since the 1970s. Contraction in run timing can also affect food availability for killer whales, as seen in several Washington populations of hatchery coho salmon, where return timing was condensed from about 14 weeks to 8 weeks during a 14-year period even though total fish numbers remained about the same (Flagg et al. 1995). Selective spawning practices at hatcheries may also influence run timing (McLean et al. 2005).

Climatic variability and change. A naturally occurring climatic pattern known as the Pacific Decadal Oscillation has recently been identified as a major cause of changing marine productivity and salmon abundance in the North Pacific (Mantua et al. 1997, Francis et al. 1998, Beamish et al. 1999, Hare et al. 1999, Benson and Trites 2002). The system is characterized by alternating 20-30-year shifts in ocean temperatures across the region, which produced cooler water temperatures from 1890-1924 and 1947-1976 and warmer water temperatures from 1925-1946 and 1977 to at least 2001. Cooler periods promote coastal biological productivity off the western contiguous U.S. and British Columbia, but inhibit productivity in Alaska, whereas warmer phases have the opposite effect (Hare et al. 1999). Salmon are probably most affected through changes in food availability and survival at sea (Benson and Trites 2002), but associated terrestrial weather patterns may also be a factor. Higher rainfall at certain times of the year during warm regimes can cause greater stream flow and flooding in western Washington, thereby reducing salmon egg survival (J. Ames, pers. comm.). The most recent warm period has been strongly tied to lower salmon production south of Alaska (Hare et al. 1999). Greater salmon numbers in Washington during the past several years indicate that the latest warm phase has concluded. Evidence suggests that the Pacific Decadal Oscillation has existed for centuries, which implies that sizable fluctuations in salmon abundance are a natural phenomenon in the North Pacific (Beamish et al. 1999, Benson and Trites 2002).

On shorter time scales, El Niño and La Niña events may also influence Pacific salmon populations, either beneficially or detrimentally, depending on salmon species, stock, and geographic range. Although not necessarily related to the to the climate patterns described above, changes in ocean temperature also directly influence salmon abundance in the Strait of Juan de Fuca and the vicinity of the San Juan Islands. In years when ocean conditions are cooler than usual, the majority of
sockeye salmon returning to the Fraser River do so via this route, but when warmer conditions prevail, migration is primarily through Johnstone Strait (Groot and Quinn 1987).

Extensive climate change caused by the continuing buildup of human-produced atmospheric carbon dioxide and other greenhouse gases is predicted to have major environmental impacts along the west coast of North America during the 21st century and beyond. Warming trends in water and air temperatures are ongoing and are projected to disrupt the region’s annual cycles of rain and snow, alter prevailing patterns of winds and ocean currents, and result in higher sea levels (Glick 2005, Snover et al. 2005). These changes, together with increased acidification of ocean waters, will likely have profound effects on marine productivity and food webs, including populations of salmon and other fish used as prey by Southern Resident killer whales. Climate change is expected to impact salmon production in a number of ways. These include 1) alterations in river and stream flows and temperatures caused by changing patterns in precipitation and snowmelt that affect the survival of eggs, fry, smolts, and adults, as well as the ability of adults to migrate upstream for spawning, 2) loss of nearshore habitats important to juvenile salmon, and 3) changes in food availability in freshwater and marine habitats (Glick 2005). Although no formal predictions of impacts on the Southern Residents have yet been made, it seems likely that any changes in weather and oceanographic conditions resulting in effects on salmon populations will have consequences for the whales.

Aquaculture of Atlantic salmon. The intensive commercial farming of Atlantic salmon (Salmo salar) and smaller amounts of Chinook and coho salmon in marine netpens in British Columbia and Washington represents an additional potential, but highly debated, threat to wild Pacific salmon (Gallaugher and Orr 2000, Gardner and Peterson 2003). The region’s industry has grown dramatically in the past several decades and produces an estimated 50 million kg of salmon annually, about 90% of which comes from British Columbia (Amos and Appleby 1999). Licensed net-pen operations currently occur at about 126 sites in British Columbia and eight sites in Washington (A. Thomson, pers. comm.; J. Kerwin, pers. comm.). Concerns center primarily over 1) marine net-penned Atlantic salmon transmitting infectious diseases to adjoining wild salmon populations and 2) escaped Atlantic salmon becoming established in the wild and competing with, preying on, or interbreeding with wild Pacific salmon. Current evidence suggests that these concerns are largely unfounded in Washington and that Atlantic salmon aquaculture poses minimal risk to wild salmon stocks there (Nash 2001, Wakinitz et al. 2002; J. Kerwin, pers. comm.). Escapes of penned Atlantic salmon exceeded 100,000 fish per year in the late 1990s in Washington (Amos and Appleby 1999), but improved management of salmon farms since then has greatly reduced this problem, resulting in far fewer free-ranging Atlantic salmon in the state’s waters (WDFW 2003). The situation in British Columbia is far more uncertain because of the much larger size of the industry (Gardner and Peterson 2003), which has resulted in larger numbers of escapes (mean = 47,150 fish per year from 1994-2002) and regular capture of free-ranging fish (mean = 1,713 fish reported per year from 1992-2002) (Morton and Volpe 2002, DFO 2003). Small numbers of naturally produced juvenile Atlantic salmon have been recorded in three rivers on Vancouver Island (e.g., Volpe 2000), but self-sustaining populations are not known to occur anywhere in the province (A. Thomson, pers. comm.). However, limitations in stream monitoring make it difficult to rule out the absence of additional populations (Gardner and Peterson 2003).
There is compelling evidence that sea lice (*Lepeophtheirus salmonis*) are transmitted from salmon farms to wild salmon (Krkosék et al. 2005), but the severity of impacts to wild fish remains uncertain (Gardner and Peterson 2003). Sea lice from farms have been linked to a decline of wild pink salmon populations in British Columbia’s Broughton Archipelago (Morton et al. 2004), although this finding has been disputed and may simply reflect a normal downward fluctuation in the populations.

Salmon farms in British Columbia are concentrated along the central coast and on west-central Vancouver Island, and are projected to continue expanding in number in the future. The eight farms in Washington are located at Ediz Hook (Clallam County), Cypress and Hope Islands (Skagit County), and off southern Bainbridge Island (Kitsap County).

Other non-native species. Several hundred exotic species are currently established in marine and estuarine areas occupied by southern resident killer whales (P. Heimowitz, pers. comm.), with numbers of new introductions steadily increasing over time (Meacham 2001, Wonham and Carlton 2005). More than half of these species are invertebrates, but fish, algae, and vascular plants are also well represented. Exotics are commonly introduced or spread through the discharge of ballast water in ships, hull and anchor fouling, boater activity, occurrence in shipments of shellfish and fish, and other pathways (Wonham and Carlton 2005). Puget Sound and the Georgia Basin are considered one of the more susceptible locations in the northeastern Pacific for invasions because of the area’s extensive shipping and other commercial activity. Although invasive species are not yet known to have direct effects on the southern residents, there is significant potential for future negative interactions through impacts on ecosystems and food webs. Filter feeding invasives, in particular, are potentially detrimental to salmon by affecting the bottom levels of food chains and reducing prey diversity (P. Meacham, pers. comm.). Other species, such as the European green crab (*Carcinus maenas*), can compete with young salmon for food and prey on salmon.

Other fish species. Declines in abundance have also been recorded in some of the other known prey of resident killer whales. The Pacific herring stock in the Georgia Basin and Puget Sound collapsed from overharvesting in the 1960s, but recovered to high levels by the late 1970s through better management practices (DFO 2002a). However, some populations, such as those at Cherry Point and Discovery Bay in Puget Sound, remain at low levels (Stout et al. 2001, NMFS 2004c). Herring abundance has also decreased off western Vancouver Island since 1989, probably because of warm ocean temperatures (DFO 2001). Heavy fishing pressure was responsible for decreases in lingcod populations throughout British Columbia during the 1970s (DFO 2002b). Numbers generally responded to improved management and rebounded during the 1980s and early 1990s, but have again declined in subsequent years. Abundance has remained low in the Strait of Georgia since the 1980s. Excessive exploitation has also caused some rockfish stocks, especially those of larger species, to decrease along much of the Pacific coast in recent decades (Bloeser 1999, Love et al. 2002, Levin et al. 2006). Copper, brown, and quillback rockfishes are among the most affected species in Puget Sound. In contrast to the species mentioned above, catch data suggest significant growth in Pacific halibut populations in British Columbia and Washington from the mid-1970s to late 1990s (International Pacific Halibut Commission 2002). Considerable fluctuation in total groundfish biomass was observed in Puget Sound and the southern Georgia Strait from 1987 to 2001 (Palsson et al. 2004).
Competition for Prey with Other Species. Salmonids and other fish are important prey for a variety of predators other than killer whales, including fish, pinnipeds, and seabirds. Some predator populations have shown large increases in abundance in western North America in recent decades in response to reduced threats. For example, California sea lion numbers expanded from an estimated 50,000 individuals in the early 1970s to nearly a quarter million animals in 2001 (Carretta et al. 2004). California sea lions are capable of consuming significant numbers of adult fish at particular sites. For example, at the Ballard Locks, a highly publicized location in Puget Sound, California sea lions were documented taking up to 65% of returning adult steelhead at a fish passage facility (NMFS 1995) and are believed to be largely responsible for the ultimate collapse of the fish run. The eastern stock of Steller sea lions has roughly doubled to about 30,000 animals since the early 1980s (Angliss and Lodge 2004). Harbor seal numbers in British Columbia, Washington, and Oregon have grown 7 to 12-fold since about 1970 to about 120,000 seals (Olesiuk 1999, Jeffries et al. 2003, Carretta et al. 2004, Brown et al. 2005). The extent of competition, if any, between these species and Southern Resident killer whales for adult salmon is currently unknown. Other than observations at a few locations during specific times of year or in response to concerns over particular depressed fish runs, no estimates are available on the numbers of salmon consumed by pinnipeds along the west coast.

Prey availability summary. Resident killer whales have likely been exposed to natural changes in the availability of salmon and other prey for millennia. During the past century and a half, human harvest pressures and alterations to the environment have undoubtedly caused important changes in food availability for resident whales. Recent research suggests that Chinook and chum salmon are major prey for the Southern Residents and that fluctuations in the abundance of both species of fish may limit the population in some years. However, much uncertainty about diet remains, including year-round prey selection, whether specific stocks of fish are important, and prey numbers required to achieve recovery of the population.

We can estimate the number of salmon that a Southern Resident population of 90 whales might need to consume is about 820,000, which seems like a small number in light of the tens of millions of salmon that presumably overlap with the range of the whales. While overall biomass of salmon may not be a limiting factor, local depletion of specific runs may be, and assessing which species and runs of fish are available to the whales in particular locations seasonally is challenging. Favorable ocean conditions across the region in the next decade or two may temporarily alleviate possible food limitations by boosting overall salmon numbers. Nevertheless, the long-term prognosis for salmon recovery in the region is unclear. Improved management programs will undoubtedly benefit some salmon populations, but continued rapid human population growth and urbanization will place greater pressure on freshwater and marine ecosystems and challenge the efforts of managers seeking to achieve meaningful recovery (Langer et al. 2000). Wild salmon populations are particularly at risk, with some authors predicting that many, or perhaps most, stocks from British Columbia to California will continue to dwindle throughout the 21st century unless major changes in human life styles occur (Lackey 2003).
Environmental Contaminants

Recent decades have brought rising concern over the adverse environmental effects resulting from the use and disposal of numerous chemical compounds in industry, agriculture, households, and medical treatment. Many types of chemicals are toxic when present in high concentrations, including legacy compounds such as organochlorines, polycyclic aromatic hydrocarbons (PAHs), and heavy metals that have long been recognized as problematic. However, a growing list of so-called “emerging” contaminants and other pollutants, such as brominated flame retardants (BFRs), perfluorinated compounds, and numerous other substances, are increasingly being linked to harmful biological impacts as well. Contaminant classes vary in their chemical properties and structures, persistence in the environment, pathways of transport through ecosystems, and effects on marine mammals and other wildlife. Despite their toxicity, most of these chemicals are still being manufactured or used in many countries.

Organochlorines. Organochlorines are frequently considered to pose the greatest risk to killer whales (Ross et al. 2000a, Center for Biological Diversity 2001, Krahn et al. 2002) and comprise a diverse group of chemicals manufactured for industrial and agricultural purposes, such as polychlorinated biphenyls (PCBs), DDT, and certain other pesticides, or produced as unintentional by-products during industrial and combustion processes, such as the dioxins (PCDDs) and furans (PCDFs). Many organochlorines are highly fat soluble (lipophilic) and have poor water solubility, which allows them to accumulate in the fatty tissues of animals, where the vast majority of storage occurs (O’Shea 1999, Reijnders and Aguilar 2002). Some are highly persistent in the environment and resistant to metabolic degradation. Vast amounts have been produced and released into the environment since the 1920s and 1930s. The persistent qualities of organochlorines mean that many are ultimately transported to the oceans, where they enter marine food chains.

Bioaccumulation through trophic transfer allows relatively high concentrations of these compounds to build up in top-level marine predators, such as marine mammals (O’Shea 1999). The toxicity of several organochlorines has led to bans or restrictions on their manufacture and use in northern industrial countries (Barrie et al. 1992). Most agriculture uses of DDT ended in the U.S. in 1972 and in Canada from 1970-1978. Production of PCBs stopped in the U.S. in 1977 and importation into Canada was prohibited in 1980. However, these compounds continue to be used widely in other parts of the world, including Asia and Latin America. Organochlorines enter the marine environment through several sources, such as atmospheric transport, ocean current transport, and terrestrial runoff (Iwata et al. 1993, Grant and Ross 2002, Garrett 2004, Hartwell 2004). As a result, these compounds have become distributed throughout the world, including seemingly pristine areas of the Arctic and Antarctic (Barrie et al. 1992, Muir et al. 1992). Much of the organochlorine load in the northern Pacific Ocean originates through atmospheric transport from Asia (Barrie et al. 1992, Iwata et al. 1993, Tanabe et al. 1994).

Killer whales are candidates for accumulating high concentrations of organochlorines because of their position atop the food web and long life expectancy (Ylitalo et al. 2001, Grant and Ross 2002). Their exposure to these compounds occurs only through diet (P. S. Ross, pers. comm.). Mammal-
eating populations appear to be especially vulnerable to accumulation of contaminants because of
the higher trophic level of their prey, as compared to fish-eating populations (Ross et al. 2000a).

Several studies have examined contaminant levels in killer whales from the North Pacific (Table 8).
It should be noted that variable sample quality, limited background information, and different
analytical techniques make direct comparisons between study results difficult (Ross et al. 2000a,
are also known to vary in relation to an animal’s physiological condition (Aguilar et al. 1999).
Most marine mammals lose weight during certain stages of their normal life cycles, such as
breeding and migration, or from other stresses, including disease and reduced prey abundance and
quality. The depletion of lipid reserves during periods of weight loss can therefore alter detected
organochlorine concentrations, depending on whether a compound is redistributed to other body
tissues or is retained in the blubber (O’Shea 1999). Perhaps most important, caution should be used
when comparing contaminant levels between free-ranging presumably healthy killer whales and
stranded individuals, which may have been in poor health before their deaths. Sick animals
commonly burn off some of their blubber before stranding.

Ross et al. (2000a) described the organochlorine loads of killer whale populations occurring in
British Columbia and Washington. Male transient killer whales were found to contain significantly
higher levels of total PCBs (ΣPCBs hereafter) than Southern Resident males, whereas females from
the two communities carried similar amounts (Table 8). Both populations had much higher ΣPCB
concentrations than Northern Resident whales. A similar pattern exists in Alaska, where transients
from the Gulf of Alaska and AT1 communities contained ΣPCB levels more than 15 times higher
than residents from the sympatric Prince William Sound pods of the southern Alaska community
(Ylitalo et al. 2001). Profiles of specific PCB congeners were similar among the three killer whale
communities from British Columbia and Washington, with congeners 153, 138, 52, 101, 118, and
180 accounting for nearly 50% of ΣPCB load (Ross et al. 2000a). Recent results from a much
broader sample of killer whale communities from the North Pacific suggest that all transient
populations and the Southern Residents possess high ΣPCB levels, whereas other resident
populations and offshore whales have lower levels (G. M. Ylitalo et al., unpubl. data).

Relatively low amounts of ΣPCDDs and ΣPCDFs were detected in these whales, possibly because
these compounds are more easily metabolized or excreted than many PCB congeners (Ross et al.
2000a). PCDD and PCDF levels detected in a small number of stranded whales from British
Columbia and Washington also appear in Jarman et al. (1996). No detailed studies of ΣDDT
concentrations in killer whales have been conducted to date in Washington or surrounding areas.
However, preliminary evidence from stranded individuals in Oregon and Washington suggests that
high levels of ΣDDTs and the metabolite p,p’-DDE may be present (Calambokidis et al. 1984,
Hayteas and Duffield 2000, Krahn et al. 2004b). High concentrations of ΣDDT’s, primarily p,p’-
DDE, have also been detected in transient whales from Alaska (Ylitalo et al. 2001). Results from
these studies establish the Southern Resident and transient populations of the northeastern Pacific as
among the most chemically contaminated marine mammals in the world (Ross et al. 2000a, Ylitalo
et al. 2001). This conclusion is further emphasized by the recent discovery of extremely high levels
of ΣPCBs in a reproductively active adult female transient whale (CA189) that stranded and died on
Dungeness Spit in January 2002 (G. M. Ylitalo, unpubl. data) (Table 8). While alive, this whale
Table 8. Contaminant concentrations (mean ± SE, mg/kg or µg/kg, lipid weight or wet weight) reported in tissue samples from killer whale populations in the North Pacific.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population</th>
<th>Age and sex</th>
<th>Sample size</th>
<th>Sample locations</th>
<th>Sample years</th>
<th>ΣPCBs (mg/kg)</th>
<th>ΣDDTs (mg/kg)</th>
<th>p,p'-DDE (mg/kg)</th>
<th>ΣPCNs (µg/kg)</th>
<th>ΣPBDEs (µg/kg)</th>
<th>ΣPBBs (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies of free-ranging animals that were biopsied or otherwise tested</td>
<td></td>
</tr>
<tr>
<td>Ross et al. (2000a)</td>
<td>WCT</td>
<td>M</td>
<td>5</td>
<td>BC</td>
<td>1993-96</td>
<td>251 ± 55 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>WCT</td>
<td>F</td>
<td>5</td>
<td>BC</td>
<td>1993-96</td>
<td>59 ± 21 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SR</td>
<td>M</td>
<td>4</td>
<td>BC</td>
<td>1993-96</td>
<td>146 ± 33 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SR</td>
<td>F</td>
<td>2</td>
<td>BC</td>
<td>1993-96</td>
<td>55 ± 19 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>AM</td>
<td>8</td>
<td>BC</td>
<td>1993-96</td>
<td>37 ± 6 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>AF</td>
<td>9</td>
<td>BC</td>
<td>1993-96</td>
<td>9 ± 3 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ylitalo et al. (2001)</td>
<td>AT</td>
<td>M, F</td>
<td>13</td>
<td>AK</td>
<td>1994-99</td>
<td>59 ± 12 (w)</td>
<td>83 ± 17 (w)</td>
<td>71 ± 15 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AT</td>
<td>M, F</td>
<td>13</td>
<td>AK</td>
<td>1994-99</td>
<td>230 ± 36 (l)</td>
<td>320 ± 58 (l)</td>
<td>280 ± 50 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SAR</td>
<td>M, F</td>
<td>64</td>
<td>AK</td>
<td>1994-99</td>
<td>3.9 ± 0.6 (w)</td>
<td>3.8 ± 0.6 (w)</td>
<td>3.1 ± 0.5 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SAR</td>
<td>M, F</td>
<td>64</td>
<td>AK</td>
<td>1994-99</td>
<td>14 ± 1.6 (l)</td>
<td>13 ± 1.8 (l)</td>
<td>11 ± 1.5 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rayne et al. (2004)</td>
<td>WCT</td>
<td>AM, JM</td>
<td>6</td>
<td>BC</td>
<td>1993-96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>167 ± 131 (l)</td>
<td>1,105 ± 605 (l)</td>
<td>27 ± 13 (l)</td>
</tr>
<tr>
<td></td>
<td>WCT</td>
<td>AF, JM</td>
<td>7</td>
<td>BC</td>
<td>1993-96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>885 ± 706 (l)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SR</td>
<td>AM, JM</td>
<td>5⁸</td>
<td>BC</td>
<td>1993-96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 ± 15 (l)</td>
<td>942 ± 582 (l)</td>
<td>31 ± 9 (l)</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>AM, JM</td>
<td>13³</td>
<td>BC</td>
<td>1993-96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22 ± 7 (l)</td>
<td>203 ± 116 (l)</td>
<td>3.1 ± 1.1 (l)</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>AF, JM</td>
<td>8</td>
<td>BC</td>
<td>1993-96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>415 ± 676 (l)</td>
<td>-</td>
</tr>
<tr>
<td>Herman et al. (2005)</td>
<td>GAT</td>
<td>-</td>
<td>5</td>
<td>AK</td>
<td>2002-03</td>
<td>150 ± 14 (l)</td>
<td>270 ± 26 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-</td>
<td>2</td>
<td>AK</td>
<td>2001-03</td>
<td>66 ± 4.6 (l)</td>
<td>170 ± 36 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AKR</td>
<td>-</td>
<td>14</td>
<td>AK</td>
<td>2002-03</td>
<td>15 ± 1.6 (l)</td>
<td>25 ± 2.7 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ono et al. (1987)</td>
<td>U</td>
<td>AM</td>
<td>1</td>
<td>JA</td>
<td>1986</td>
<td>410 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>AF</td>
<td>2</td>
<td>JA</td>
<td>1986</td>
<td>355 ± 5 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 8. Continued

<table>
<thead>
<tr>
<th>Studies of stranded animals</th>
<th>WCT</th>
<th>AM</th>
<th>BC</th>
<th>WA</th>
<th>1979</th>
<th>250 (w)</th>
<th>-</th>
<th>640 (w)</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarman et al. (1996)</td>
<td>U</td>
<td>JM, AM</td>
<td>BC, WA</td>
<td>1986-89</td>
<td>22 (w)</td>
<td>32 (w)</td>
<td>28 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hayteas and Duffield (2000)</td>
<td>U</td>
<td>JM</td>
<td>3</td>
<td>OR</td>
<td>1988-97</td>
<td>146 ± 135 (w)</td>
<td>-</td>
<td>174 ± 106 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Krahn et al. (2004b)</td>
<td>SR</td>
<td>AF</td>
<td>1</td>
<td>WA</td>
<td>2002</td>
<td>2.5 (w)</td>
<td>2.8 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WCT</td>
<td>AF</td>
<td>1</td>
<td>WA</td>
<td>2002</td>
<td>570 (w)</td>
<td>2.300 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WCT</td>
<td>AF</td>
<td>1</td>
<td>WA</td>
<td>2002</td>
<td>1,100 (l)</td>
<td>4.700 (l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AT</td>
<td>AM</td>
<td>1</td>
<td>AK</td>
<td>2003</td>
<td>130 (w)</td>
<td>190 (w)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

- **WCT**, west coast transients; **SR**, southern residents; **AM**, Alaska residents; **OR**, offshores; **AK**, western Alaska and southern Alaska residents; and **U**, not identified.
- **M**, males; **F**, females; **A**, adults; and **J**, juveniles.
- **Number of animals sampled.**
- **Concentrations expressed on the basis of lipid weight (l) or wet weight (w).**
- **Concentrations expressed on the basis of lipid weight (l) or wet weight (w).**
- **The animals studied by Ono et al. (1987) were accidentally caught and killed by commercial fishermen.**
- **Smaller samples were tested for ΣPCNs and ΣPBBs.**
was recorded most frequently off California, thus its high contaminant load may largely reflect pollutant levels in prey from that region (M. M. Krahn, pers. comm.). It should be noted that organochlorine levels have not yet been established for the three Southern Resident pods. It is unknown whether L pod has higher contaminant levels than J or K pods, thus accounting for its recent decline.

Polychlorinated naphthalenes (PCNs) are another organochlorine group of concern. Evidence suggests that PCNs have the potential to bioaccumulate and exert “dioxin-like” toxicity (Rayne et al. 2004). PCNs most likely came from pulp mill discharges, with production ceasing in North America and Europe in the 1970s and 1980s. ΣPCN concentrations are relatively low in killer whales from the northeastern Pacific, with transients carrying the highest burdens, and much lower but similar levels occurring in southern and Northern Residents (Table 8; Rayne et al. 2004).

No direct temporal data are available to indicate whether contaminant concentrations have changed over time in the region’s killer whales. Populations visiting Puget Sound have been exposed to PCBs and DDT for a number of decades. Sediment analyses indicate that large amounts of PCBs began entering marine ecosystems in the sound during the late 1930s, whereas inputs of DDT date back to the 1920s (Mearns 2001). The presence of both chemicals peaked in about 1960. Since then, environmental levels of many organochlorines (e.g., PCBs, dioxins, furans, organochlorine pesticides, and chlorophenols) have substantially declined (Gray and Tuominen 2001, Mearns 2001, Grant and Ross 2002). Mean ΣPCB concentrations in harbor seal pups from Puget Sound fell from more than 100 mg/kg, wet weight in 1972 to about 20 mg/kg, wet weight in 1990, but have since leveled off (Calambokidis et al. 1999). Recent modeling of PCB levels in killer whales from British Columbia and Washington suggests that concentrations have declined by about 2.5 times since 1970 (B. Hickie and P. S. Ross, unpubl. data).

Concentrations of most organochlorine residues in killer whales are strongly affected by an animal’s age, sex, and reproductive status (Ross et al. 2000a, Ylitalo et al. 2001). Levels in juveniles of both sexes increase continuously until sexual maturity. Males continue to accumulate organochlorines throughout the remainder of their lives, but reproductive females sharply decrease their own burden by transferring much of it to their offspring during gestation and nursing. Because organochlorines are fat-soluble, they are readily mobilized from the female’s blubber to her fat-rich milk and passed directly to her young in far greater amounts during lactation than through the placenta during pregnancy (Reijnders and Aguilar 2002). As a result, mothers possess much lower levels than their weaned offspring, as well as adult males of the same age bracket (Ylitalo et al. 2001). After females become reproductively senescent at about 40 years old, their organochlorine concentrations once again begin to increase (Ross et al. 2000a). Similar patterns of accumulation have been reported in other marine mammals (Tanabe et al. 1987, 1994, Aguilar and Borrell 1988, 1994a, Borrell et al. 1995, Beckmen et al. 1999, Krahn et al. 1999, Tilbury et al. 1999).

Birth order also influences the organochlorine burdens of killer whales. First-born adult male resident whales contain significantly higher levels of ΣPCBs and ΣDDTs than non-first-born males of the same age group (Ylitalo et al. 2001, Krahn et al. 2002). This pattern presumably exists among immature females as well. In other delphinids, females pass as much as 70-100%
of their organochlorine load to their offspring during lactation, with the first calf receiving by far
the largest burden (Tanabe 1988, Cockcroft et al. 1989, Borrell et al. 1995). Thus, females that
have gone through previous lactation cycles carry substantially lower organochlorine loads and
transfer reduced amounts to subsequent young (Aguilar and Borrell 1994a, Ridgway and Reddy
1995). These observations indicate that first-born killer whales are the most likely to suffer from
any organochlorine toxicity effects (Ylitalo et al. 2001).

The effects of chronic exposure to moderate to high contaminant levels have not yet been
ascertained in killer whales. There is no evidence to date that high organochlorine
concentrations cause direct mortality in this species or other cetaceans (O’Shea and Aguilar
2001). However, a variety of more subtle physiological responses in marine mammals has been
linked to organochlorine exposure (Table 9), including impaired reproduction (Béland et al.
(Gregory and Cyr 2003), disruption of enzyme function and vitamin A physiology (Marsili et al.
1998, Simms et al. 2000), and skeletal deformities (Bergman et al. 1992). PCB-caused
suppression of the immune system can increase susceptibility to infectious disease (Jepson et al.
1999, Ross 2002, Ross et al. 1996b) and was implicated in morbillivirus outbreaks that caused
massive die-offs of dolphins in the Mediterranean Sea during the early 1990s (Aguilar and
Borrell 1994b) and harbor seals and gray seals (Halichoerus grypus) in the North Sea in the late
1980s (de Swart et al. 1994, Ross et al. 1995, 1996a). Immune suppression may be especially
likely during periods of stress and resulting weight loss, when stored organochlorines are
released from the blubber and become redistributed to other tissues (Krahn et al. 2002). In
captive bottlenose dolphins, females whose calves died before six months of age were found to
have substantially higher levels of ΣDDTs and ΣPCBs than females with surviving calves
(Ridgeway et al. 1995). In non-marine mammals, PCB exposure has been commonly linked to
hearing deficiencies, which result from thyroid hormone deprivation during early development
(Colborn and Smolen 2003). This problem could have profound implications for cetaceans if it
extends to this group.

Several studies have attempted to establish threshold levels at which organochlorines become
toxic to marine mammals. However, susceptibility to PCBs varies substantially among mammal
species, even within a genus, making it difficult to generalize about sensitivity (O’Shea 1999).
Nevertheless, it is likely that all males from the three tested killer whale communities in
Washington and British Columbia, as well as most female transients and Southern Residents,
exceed the toxicity levels believed to cause health problems in other marine mammals (Ross et
al. 2000a).
Table 9. Summary of studies describing physiological effects resulting from exposure to different contaminants in marine mammals.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Type of contaminant</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced resistance to disease and viruses</td>
<td>PCBs</td>
<td>Striped dolphin</td>
<td>Aquilar and Borrell (1994b)</td>
</tr>
<tr>
<td>Decreased lymphocyte response</td>
<td>PCBs, DDT</td>
<td>Bottlenose dolphin</td>
<td>Lahvis et al. (1995)</td>
</tr>
<tr>
<td>Decreased lymphocyte proliferation</td>
<td>Butyltin compounds, non-ortho coplaner PCBs</td>
<td>Bottlenose dolphin, Dall's porpoise, California sea lion, spotted seal</td>
<td>Nakata et al. (2002)</td>
</tr>
<tr>
<td>Disrupted immune function</td>
<td>PCBs</td>
<td>Harbor seal</td>
<td>de Swart et al. (1994), Ross et al. (1995)</td>
</tr>
<tr>
<td>Disrupted immune function</td>
<td>Non- and mono-ortho coplaner PCBs</td>
<td>Harbor seal pups, northern elephant seal pups</td>
<td>Shaw et al. (1999)</td>
</tr>
<tr>
<td>Disrupted immune function, reduced T-cell function, reduced natural killer-cell function</td>
<td>Dioxin-like PCBs and furans</td>
<td>Harbor seal, grey seal</td>
<td>Ross et al. (2000)</td>
</tr>
<tr>
<td>Disrupted immune function, reduced T-cell response, reduced natural killer-cell function, increased polymorphonuclear granulocytes</td>
<td>PCBs, PCDDs, PCDFs, TCDD</td>
<td>Harbor seal</td>
<td>de Swart et al. (1993)</td>
</tr>
<tr>
<td>Adrenocorticol hyperplasia</td>
<td>Chlorinated hydrocarbons</td>
<td>Harbor porpoise</td>
<td>Kuiken et al. (1993)</td>
</tr>
<tr>
<td>Skin-oxidose activity</td>
<td>Organochlorines</td>
<td>Fin whale</td>
<td>Marsili et al. (1998)</td>
</tr>
<tr>
<td>Reduced vitamin A and thyroid hormone production</td>
<td>PCBs</td>
<td>Harbor seal</td>
<td>Brouwer et al. (1989)</td>
</tr>
<tr>
<td>Adrenal bioactivation and effects on thyroid metabolism</td>
<td>DDTs, PCBs</td>
<td>Gray seal</td>
<td>Lund (1994)</td>
</tr>
<tr>
<td>Reduced testosterone and immunoglobulin (pIgG), suppression of antibody-mediated immunity, negative associations between PCBs and retinol and thyroid hormones in plasma</td>
<td>PCBs</td>
<td>Polar bear</td>
<td>Skaare et al. (2002)</td>
</tr>
<tr>
<td>Plasma cortisol concentration alteration</td>
<td>Organochlorines</td>
<td>Polar bear</td>
<td>Oskam et al. (2004)</td>
</tr>
<tr>
<td>Variations in progesterone (P4) levels</td>
<td>Plasma sigma PCBs</td>
<td>Polar bear</td>
<td>Haave et al. (2002)</td>
</tr>
<tr>
<td>Impaired reproduction</td>
<td>Organochlorines, DDT</td>
<td>Bottlenose dolphin</td>
<td>Reddy et al. (2001)</td>
</tr>
<tr>
<td>Impaired reproductive success in primiparous females</td>
<td>PCBs</td>
<td>Bottlenose dolphin</td>
<td>Schwacke et al. (2002)</td>
</tr>
<tr>
<td>Reproductive dysfunction</td>
<td>PCBs</td>
<td>Ringed seal</td>
<td>AMAP (1998)</td>
</tr>
<tr>
<td>Reproductive failure</td>
<td>PCBs</td>
<td>Harbor seal</td>
<td>Reijnders (1986)</td>
</tr>
<tr>
<td>Premature births</td>
<td>PCBs, DDT</td>
<td>California sea lion</td>
<td>Gilmartin et al. (1976)</td>
</tr>
<tr>
<td>Premature births</td>
<td>Organochlorines, DDT</td>
<td>California sea lion</td>
<td>Delong et al. (1973)</td>
</tr>
<tr>
<td>DNA strand breakage and repair</td>
<td>Methyl mercury chloride</td>
<td>Bottlenose dolphin</td>
<td>Taddei et al. (2001)</td>
</tr>
</tbody>
</table>
Brominated flame retardants. Polybrominated diphenyl ethers (PBDEs) have attracted recent concern because of their expanding presence in the environment, wildlife, and humans, and their lipophilic, bioaccumulative, and persistent qualities (de Wit 2002, Hall et al. 2003, Hites 2004). PBDEs are widely used as a flame retardant in consumer products and probably enter the environment via manufacturing processes and wastewater effluents. Production and use are especially high in North America, where contamination levels have been doubling about every four to six years during the past several decades (Hites 2004). PBDEs have been linked to endocrine disruption, immunotoxicity, neurotoxicity, and early developmental problems in laboratory animals and wild seals (de Wit 2002, Darnerud 2003, Hall et al. 2003). Rayne et al. (2004) documented PBDE concentrations in killer whales from the northeastern Pacific using biopsy samples collected from 1993-1996. Southern Resident and transient whales carried similar ΣPBDE levels that were considerably higher than in Northern Residents (Table 8). No age- or sex-related differences in contamination were noted, although this may have been an artifact of the small sample size. Lindström et al. (1999) reported substantially higher PBDE levels in immature long-finned pilot whales (Globicephala melas) than in adults, suggesting that maternal transfer during lactation and gestation may occur. Rayne et al. (2004) found that BDE-47, BDE100, and BDE99 were the most prevalent congeners detected in killer whales from the northeastern Pacific. It is likely that substantial increases in the animals’ ΣPBDE concentrations have occurred since the samples analyzed by Rayne et al. (2004) were collected, mirroring continuing widespread gains in the environment. Manufacture of two (penta-BDEs and octa-BDEs) of the three PBDE forms was terminated in the United States at the close of 2004.

Polybrominated biphenyls (PBBs) are a related type of flame retardant produced during the early 1970s. ΣPBB levels in resident and transient whales sampled from 1993 to 1996 were much lower than for ΣPBDEs (Table 8), but showed similar patterns of occurrence, with southern residents and transients having significantly higher concentrations than Northern Residents (Rayne et al. 2004).

Other chemical compounds. With up to 1,000 new chemicals entering the global environment annually, it is difficult for environmental agencies to monitor levels and sources of all contaminants, and to provide effective regulation (Grant and Ross 2002). Studies are beginning to identify many relatively new substances as potentially harmful to marine organisms, including perfluorinated compounds, polychlorinated paraffins (PCPs), polychlorinated naphthalenes (PCNs), polychlorinated terphenyls (PCTs), endocrine disruptors (e.g., synthetic estrogens, steroids, some pesticides), pharmaceuticals, and personal care products (e.g., diagnostic agents and cosmetics) (Grant and Ross 2002). For example, perfluorooctane sulfonate (PFOS), a type of perfluorinated compound that is persistent and biomagnified, has been recently detected in a variety of marine mammals species from the northern hemisphere (Kannan et al. 2001, Van de Vijver et al. 2003). Endocrine disruptors may affect thyroid function, decrease fertility, feminize or masculinize genital anatomy, suppress immune function, and alter behavior (Yamamoto et al. 1996). The effects of all these compounds on killer whales remain unknown.

Toxic elements. The three elements usually considered of greatest concern to cetaceans are mercury, cadmium, and lead (O’Shea 1999). Mercury, cadmium, and other metals accumulate primarily in the liver and kidneys, whereas lead is deposited mostly in bones (Reijnders and Aguilar 2002). Concentrations of most metals tend to increase throughout an animal’s life.
Most metals are not lipophilic and females cannot significantly reduce their loads via reproductive transfer. There are, however, organic forms of metals such as methylmercury that accumulate in the lipids of prey species and killer whales. Many marine mammal species are able to tolerate high amounts of metals or detoxify them (Reijnders and Aguilar 2002) and published accounts of metal-caused pathology are scarce (O’Shea 1999). To date, there has been little investigation of metals in killer whales in Washington and British Columbia. Small numbers of animals have been tested, with one stranded 17-year old male resident (L14) having high liver concentrations of mercury (reported as >600 mg/kg, wet weight, of which 14% was in the toxic methylated form, J. Calambokidis, unpubl. data; also reported as 1,272 mg/kg, wet weight, Langelier et al. 1990). An adult female transient (CA189) that stranded at Dungeness Spit in January 2002 carried the following metal levels (wet weight) in its liver: mercury, 129 mg/kg; cadmium, <0.15 mg/kg; and lead, <0.15 mg/kg (G. M. Ylitalo, unpubl. data). Stranded resident whales appear to carry higher amounts of mercury than transients (Langelier et al. 1990, cited in Baird 2001). With the exception of mercury, most metals do not bioaccumulate and are therefore unlikely to directly threaten the health of killer whales (Grant and Ross 2002). However, their greatest impact may be on prey populations and habitat quality.

Contaminant levels in prey and indicator species. Relatively few studies have measured organochlorine loads in known or potential prey species of killer whales in Washington, British Columbia, and adjacent areas. However, growing evidence suggests that Puget Sound is a major source of contamination in prey, especially Chinook salmon, which are thought to be a major food species for southern resident killer whales. New research indicates that Chinook salmon from the sound possess much higher mean ΣPCB and ΣPBDE levels than Chinook from other locations sampled along the western coast of North America (Table 9; O’Neill et al. 2005, 2006). This work also reveals that Puget Sound Chinook with long residency times in the Sound have much greater ΣPCB and ΣPBDE burdens than those inhabiting the open North Pacific Ocean for much of their lives. In contrast, ΣDDT loads were similar among Chinook salmon populations from Puget Sound, the Columbia River, and central California, but higher than in those from British Columbia (O’Neill et al. 2006). Among the five salmon species occurring in Puget Sound, the highest ΣPCB loads were carried by Chinook, with moderate levels found in sockeye and coho, and low levels present in chum and pink salmon (O’Neill et al. 2005). Other research reveals that adult coho salmon returning to spawn in central and southern Puget Sound have higher ΣPCB concentrations than those returning to northern Puget Sound (West et al. 2001a). Dissimilarity in contaminant burdens among salmon species and populations likely reflects differences in marine distribution (O’Neill et al. 2006). In English sole, rockfish, and herring, ΣPCB levels are influenced by the contaminant levels of local sediments. Thus, sole and rockfish living near contaminated urban areas often have higher burdens than those from nonurban sites (O’Neill et al. 1995, West et al. 2001b) and herring from central and southern Puget Sound possess greater burdens than those from northern Puget Sound and the Strait of Georgia (O’Neill and West 2001). In some long-lived fish species, PCB concentrations accumulate with age so that older individuals carry significantly higher burdens than younger individuals (O’Neill et al. 1995, 1998). In rockfish, this type of accumulation occurs only in males (West et al. 2001b). Recent analyses of PCB levels in harbor seals indicate that seals and their prey in Puget Sound are seven times more contaminated than those in the Strait of Georgia (Cullon et al. 2005). Pinnipeds and porpoises carry far greater amounts of PCBs and DDTs than baleen whales.
Table 9. Summary of ΣPCB, ΣDDT, and ΣPBDE concentrations (mean ± SE, mg/kg, wet weight) in tissue samples from various fish and mammal species that are known or potential prey of resident and transient killer whales in Washington and neighboring areas. Results are combined for both sexes. A more complete listing of contaminant levels in marine mammals appears in Wiles (2004).

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Age<sup>a</sup></th>
<th>Tissue analyzed</th>
<th>Sample size</th>
<th>ΣPCBs (mg/kg)</th>
<th>ΣDDTs (mg/kg)</th>
<th>ΣPBDEs (mg/kg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook salmon</td>
<td>Puget Sound, s. Georgia Str, Wash.</td>
<td>4</td>
<td>muscle</td>
<td>66</td>
<td>.050 ± .005</td>
<td>.022 ± .001</td>
<td></td>
<td>O'Neill et al. (1995)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>s. and e. Puget Sound, Wash.</td>
<td>-</td>
<td>muscle</td>
<td>34</td>
<td>.074</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (1998)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Puget Sound, Wash.</td>
<td>A</td>
<td>muscle</td>
<td>-</td>
<td>~ .053</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>British Columbia</td>
<td>A</td>
<td>muscle</td>
<td>-</td>
<td>~ .018</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Washington coast</td>
<td>A</td>
<td>muscle</td>
<td>-</td>
<td>~ .016</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Columbia River</td>
<td>A</td>
<td>muscle</td>
<td>-</td>
<td>~ .017</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Oregon</td>
<td>A</td>
<td>muscle</td>
<td>-</td>
<td>~ .010</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Puget Sound, Wash. (fall runs)</td>
<td>A whole body</td>
<td>-</td>
<td>~ .043</td>
<td>~ .029</td>
<td>~ .018</td>
<td></td>
<td>O'Neill et al. (2005, 2006)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Puget Sound, Wash. (resident)</td>
<td>A whole body</td>
<td>-</td>
<td>~ .088</td>
<td>~ .016</td>
<td>~ .040</td>
<td></td>
<td>O'Neill et al. (2006)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Coastal B.C.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .007</td>
<td>~ .007</td>
<td>~ .001</td>
<td></td>
<td>O'Neill et al. (2005, 2006)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Columbia River (spring runs)</td>
<td>A whole body</td>
<td>-</td>
<td>~ .035</td>
<td>~ .035</td>
<td>~ .010</td>
<td></td>
<td>O'Neill et al. (2005, 2006)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Columbia River (summer/fall runs)</td>
<td>A whole body</td>
<td>-</td>
<td>~ .016</td>
<td>~ .020</td>
<td>~ .004</td>
<td></td>
<td>O'Neill et al. (2005, 2006)</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Sacramento River, Calif.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .014</td>
<td>~ .033</td>
<td>~ .003</td>
<td></td>
<td>O'Neill et al. (2005, 2006)</td>
</tr>
<tr>
<td>Sockeye salmon</td>
<td>Puget Sound, Wash.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .019</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Sockeye salmon</td>
<td>Coastal B.C.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .008</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Coho salmon</td>
<td>Puget Sound, Wash.</td>
<td>3</td>
<td>muscle</td>
<td>32</td>
<td>.035</td>
<td>-</td>
<td></td>
<td>O'Neill et al. (1998)</td>
</tr>
<tr>
<td>Coho salmon</td>
<td>Puget Sound, Wash.</td>
<td>4</td>
<td>muscle</td>
<td>47</td>
<td>.019 ± .002</td>
<td>.011 ± <.001</td>
<td></td>
<td>West et al. (2001a)</td>
</tr>
<tr>
<td>Coho salmon</td>
<td>Puget Sound, Wash.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .014</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Coho salmon</td>
<td>Coastal B.C.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .010</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Chum salmon</td>
<td>Coastal B.C.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .003</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Pink salmon</td>
<td>Coastal B.C.</td>
<td>A whole body</td>
<td>-</td>
<td>~ .001</td>
<td>-</td>
<td></td>
<td></td>
<td>O'Neill et al. (2005)</td>
</tr>
<tr>
<td>Pacific herring</td>
<td>Puget Sound, s. Georgia Str, Wash.</td>
<td>3 whole body</td>
<td>-</td>
<td>~ .012</td>
<td>.029 ± .004</td>
<td></td>
<td></td>
<td>West et al. (2001a)</td>
</tr>
<tr>
<td>English sole</td>
<td>Puget Sound, s. Georgia Str, Wash.</td>
<td>6 muscle</td>
<td>113</td>
<td>.022 ± .002</td>
<td>.001 ± <.001</td>
<td></td>
<td></td>
<td>West et al. (2001a)</td>
</tr>
<tr>
<td>Quillback rockfish</td>
<td>Puget Sound, San Juan Isl., Wash.</td>
<td>14 muscle</td>
<td>83</td>
<td>.028 ± .003</td>
<td>.001 ± <.001</td>
<td></td>
<td></td>
<td>West et al. (2001a)</td>
</tr>
<tr>
<td>Brown rockfish</td>
<td>Puget Sound, San Juan Isl., Wash.</td>
<td>22 muscle</td>
<td>35</td>
<td>.027 ± .004</td>
<td>.002 ± <.001</td>
<td></td>
<td></td>
<td>West et al. (2001a)</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>Puget Sound, Wash.</td>
<td>P blubber</td>
<td>7</td>
<td>17.1 ± 2.1</td>
<td>2.2 ± 0.3<sup>c</sup></td>
<td></td>
<td></td>
<td>Calambokidis et al. (1991)</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>e. Strait of Juan de Fuca, Wash.</td>
<td>P blubber</td>
<td>7</td>
<td>4.0 ± 2.5</td>
<td>1.5 ± 0.8<sup>c</sup></td>
<td></td>
<td></td>
<td>Calambokidis et al. (1991)</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>Puget Sound, Wash.</td>
<td>P blubber</td>
<td>57</td>
<td>13.4 ± 1.1</td>
<td>2.0 ± 0.2</td>
<td></td>
<td></td>
<td>Calambokidis et al. (1999)</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>Georgia Strait, British Columbia</td>
<td>P blubber</td>
<td>38</td>
<td>2.5 ± 0.2</td>
<td>-</td>
<td></td>
<td></td>
<td>Ross et al. (2004)</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>Queen Charlotte Strait, B.C.</td>
<td>P blubber</td>
<td>5</td>
<td>1.1 ± 0.3</td>
<td>-</td>
<td></td>
<td></td>
<td>Ross et al. (2004)</td>
</tr>
<tr>
<td>Harbor porpoise</td>
<td>Washington<sup>a</sup></td>
<td>I,A blubber</td>
<td>8</td>
<td>17.3 ± 3.9</td>
<td>14.4 ± 3.2<sup>c</sup></td>
<td></td>
<td></td>
<td>Calambokidis and Barlow (1991)</td>
</tr>
<tr>
<td>Harbor porpoise</td>
<td>British Columbia<sup>c</sup></td>
<td>C,I,A blubber</td>
<td>7</td>
<td>8.4<sup>d</sup></td>
<td>8.2<sup>d</sup></td>
<td></td>
<td></td>
<td>Jarman et al. (1996)</td>
</tr>
<tr>
<td>Gray whale</td>
<td></td>
<td>- blubber</td>
<td>38</td>
<td>.220 ± .042</td>
<td>.130 ± .026</td>
<td></td>
<td></td>
<td>Krahn et al. (2001)</td>
</tr>
</tbody>
</table>

^a Expressed as years of age or age category (A, adults; P, pups; C, calves; and I, immatures).
^b Collected from Edmonds, Elliott Bay, Commencement Bay, and Bremerton.
^c Only p,p'-DDE was measured.
^d Collected primarily from the outer coast.
^e Collected primarily from southern Vancouver Island.
Sources of contaminants. Marine ecosystems in the northeastern Pacific receive pollutants from a variety of local, regional, and international sources (Grant and Ross 2002, EVS Environmental Consultants 2003, Garrett 2004), but the relative contribution of these sources in the contamination of killer whales is poorly known. Because resident killer whales carry increasingly higher chemical loads from Alaska to Washington (Ross et al. 2000a, Ylitalo et al. 2001), it is likely that pollutants originating within Puget Sound and the Georgia Basin probably play a greater role in contamination than those from other sources. This pattern is apparent in Chinook salmon with longer residency periods in Puget Sound, which carry considerably higher burdens of PCBs than populations from other areas (O’Neill et al. 2005). Ross et al. (2000a) have suggested that elevated organochlorine concentrations in Southern Residents might result from their consumption of small amounts of highly contaminated prey near industrialized areas. Additionally, because most of the region’s salmon populations are pelagic for long lengths of time, atmospheric deposition of PCBs and other pollutants in the North Pacific may be an important route for food chain contamination (Ross et al. 2000a). Sources of pollutants in transient whales are also difficult to decipher. Transients are highly contaminated throughout much of their distribution, but this very likely results from the higher trophic level and biomagnification abilities of their prey, as well as possibly from the widespread movements of many of these whales. PCBs, polycyclic aromatic hydrocarbons (PAHs), and a number of other pollutants appear to occur at substantially higher levels in Puget Sound than elsewhere in Washington and southern British Columbia, including the Strait of Georgia, based on studies of contaminant loads in harbor seals, herring, and mussels (Hong et al. 1996, Mearns 2001, O’Neill and West 2001, Grant and Ross 2002, Ross et al. 2004, Cullon et al. 2004). This geographic pattern undoubtedly stems from greater contaminant inputs into Puget Sound due to human activities as well as the sound’s lower rates of flushing and sedimentation (O’Neill et al. 1998, West et al. 2001a).

Recent analyses indicate that 1% of the marine sediments in Puget Sound are highly degraded by chemical contamination, whereas 57% show intermediate degrees of deterioration and 42% remain relatively clean (Long et al. 2001). Hotspots for contaminated sediments are centered near major urban areas, where industrial and domestic activities are concentrated. Locations of particular concern include Bellingham Bay, Fidalgo Bay, Everett Harbor and Port Gardner, Elliott Bay, Commencement Bay, Sinclair Inlet and other sites near Bremerton, and Budd Inlet (Long et al. 2001, EVS Environmental Consultants 2003), but contamination can extend widely into even some rural bays. Some contaminated hot spots in Puget Sound are located in nursery areas for many of the species in the Sound. Analyses of contaminants in fish and mussels suggest that some pollutants are most abundant in central and southern Puget Sound (Mearns 2001, O’Neill and West 2001, West et al. 2001a, EVS Environmental Consultants 2003). Summaries of contaminant presence in the Canadian waters of the Georgia Basin appear in Garrett (2004).

NMFS analyzed sediment data from several sources to identify locations within inland habitat of killer whales where sediment samples have been analyzed for contaminants of interest (Figure
This information was analyzed further to identify locations where sediment sample analysis indicated that elevated levels of these contaminants were detected. NMFS identified those sampling locations where these contaminants were detected at concentrations that meet or exceed the "No Effects" and "Minor Adverse Effects" levels of the Washington State Sediment Quality Standards (WAC 173-204). For some contaminants, no Washington State Sediment Quality Standards (WAC 173-204) exist. In some instances, NMFS used screening levels for these compounds in sediment developed by the U.S. Army Corps of Engineers to identify locations of interest (U.S. Army Corps of Engineers 2000). In other instances, no sediment criteria or screening level existed. In these cases, NMFS identified locations where these contaminants had been detected in sediment samples. NMFS integrated the marine sediment quality data from these sources into a geodatabase to create maps. In some instances, the data from these datasets were excluded from subsequent analysis because no sampling location information was available (e.g., latitude and longitude), the data did not address sediment samples or contaminants of interest, or the data could not be integrated readily into the geodatabase.

Marine pollutants originate from a multitude of urban and non-urban activities, such as improper disposal of manufacturing by-products, processing and burning of fossil fuels, discharge of leachate from landfills and effluent from wastewater treatment plants (Appendix B), agricultural use of pesticides, and terrestrial runoff. During the past few decades, regulatory actions, improved waste handling, and on-going cleanup efforts have led to marked improvements in regional water quality. Important actions taken include the cessation of PCB production and DDT use in the 1970s and the elimination of most dioxin and furan emissions from pulp and paper mills during the 1980s and early 1990s. Significant progress has been made in the cleaning and containment of the 31 Superfund sites in the Puget Sound basin, of which at least 11 leaked contaminants into coastal waters (Appendix C). Advances in the control of point-source pollution have also taken place. Environmental levels of many organochlorine residues (e.g., PCBs, dioxins, furans, organochlorine pesticides, and chlorophenols) have declined significantly during this period (Gray and Tuominen 2001, Mearns 2001, Grant and Ross 2002, EVS Environmental Consultants 2003). For example, mean ΣPCB concentrations in harbor seal pups from Puget Sound fell from more than 100 mg/kg, wet weight in 1972 to about 20 mg/kg, wet weight in 1990 (Calambokidis et al. 1999). Despite these improvements, the presence of some chemicals (e.g., PCBs and DDE) in coastal habitats and wildlife has stabilized since the early 1990s and is not expected to decline further for decades to come (Calambokidis et al. 1999, Grant and Ross 2002). By contrast, environmental levels of many emerging contaminants, which are typically poorly regulated, are probably increasing.
Figure 15. Contaminated sediments in Puget Sound that meet or exceed “Minor Adverse Effects” Level.
Atmospheric transport of pollutants is another important contaminant source for marine ecosystems. Due to the prevailing wind patterns of the Northern Hemisphere, a number of substances (e.g., PCBs, DDT, other pesticides, dioxins, furans, and metals) are carried in this manner from Asia to the northeastern Pacific (Iwata et al. 1993, Tanabe et al. 1994, Blais et al. 1998, Ewald et al. 1998, Jaffé et al. 1999, Ross et al. 2000a, Grant and Ross 2002, Lichota et al. 2004). Such contamination particularly affects the open North Pacific Ocean, where migratory salmon populations spend much of their lives maturing, but also impacts the coastal waters and land areas of Washington and British Columbia. Locally produced airborne pollutants (e.g., certain PCBs, dioxins, and furans) also enter coastal marine waters (Lichota et al. 2004).

Increased human population growth, urbanization, and intensified land use are projected for western Washington and southern British Columbia during the coming decades (Transboundary Georgia Basin-Puget Sound Environmental Indicators Working Group 2002) and will undoubtedly subject coastal ecosystems to greater contaminant input (Gray and Tuominen 2001, Grant and Ross 2002). Emissions from Asian sources are also expected to gradually expand and continue to reach the open North Pacific and mainland of northwestern North America. In particular, PCBs will likely remain a health risk for at least several more decades due to their persistence, their continued cycling in the environment through food webs and atmospheric processes, and the relative inability of marine mammals to metabolize them (Ross et al. 2000a, Calambokidis et al. 2001). Thus, exposure of the region’s killer whales to contaminants is not expected to change appreciably in the foreseeable future (Grant and Ross 2002, Krahn et al. 2002).

Vessel Effects and Sound

Many marine mammal populations may be experiencing increased exposure to vessels and associated sounds. Commercial shipping, whale watching, ferry operations, and recreational boating traffic have expanded in many regions in recent decades, including the northeastern Pacific. Commercial fishing boats are also a prominent part of the vessel traffic in many areas. Vessels have the potential to affect whales through the physical presence and activity of the vessel, the increased underwater sound levels generated by boat engines or a combination of these factors. Vessel strikes are rare, but do occur and can result in injury. In addition, underwater sound can be generated by a variety of other human activities, such as, dredging, drilling, construction, seismic testing, and sonar (Richardson et al. 1995, Gordon and Moscrop 1996, National Research Council 2003). Other than direct vessel strikes, potential impacts from all of these sources are poorly understood.

Killer whales rely on their highly developed acoustic sensory system for navigating, locating prey, and communicating with other individuals. Increased levels of anthropogenic sound have the potential to mask echolocation and other signals used by the species, as well as to temporarily or permanently damage hearing sensitivity. Exposure to sound may therefore be detrimental to survival by impairing foraging and other behavior, resulting in a negative energy balance (Bain and Dahlheim 1994, Gordon and Moscrop 1996, Erbe 2002, Williams et al. 2002a, 2002b). In other cetaceans, hormonal changes indicative of stress have been recorded in response to intense sound exposure (Romano et al. 2003). Chronic stress is known to induce harmful physiological conditions including lowered immune function, in terrestrial mammals and
likely does so in cetaceans (Gordon and Moscrop 1996). The threshold levels at which underwater sounds becomes harmful to killer whales remain poorly understood (Krahn et al. 2002).

Whale watching. Whale watching has become an important tourist industry in many localities around the world since the early 1980s (Hoyt 2001, 2002). In addition to boosting the economies of coastal communities and providing an economic reason for preserving whale populations, whale watching has also proven beneficial by increasing public awareness of marine mammals and the environmental issues confronting them (Barstow 1986, Tilt 1986, Duffus and Deardon 1993, Lien 2001). In Washington and British Columbia, killer whales are the main target species of the commercial whale-watching industry, easily surpassing other species such as gray whales, porpoises, and pinnipeds (Hoyt 2001). Killer whale watching in the region is centered primarily on the Southern and Northern Residents, which can be found more reliably than transients or offshores. Viewing activity occurs predominantly in and around Haro and Johnstone Straits, which are the summer core areas of the two resident communities. However, Haro Strait supports a considerably greater industry because of its proximity to urban areas. Both commercial and private vessels engage in whale watching, as well as kayaks and small numbers of aircraft. In addition, land-based viewing is popular at locations such as Lime Kiln Point State Park, San Juan County Park, and the San Juan County land bank on San Juan Island, Turn Point on Stuart Island, and East Point on Saturna Island (K. Koski, pers. comm.). Lime Kiln Point State Park was established in 1984 by the Washington State Parks and Recreation Commission for the purpose of watching killer whales (Ford et al. 2000) and receives about 170,000 to 200,000 visitors per year, most of whom hope to see whales (Koski 2006; W. Hoppe, pers. comm.).

Commercial viewing of killer whales began in Washington and southern British Columbia in 1977 and persisted at a small scale through the early 1980s, with just a few boats operating and fewer than 1,000 passengers serviced per year (Osborne 1991, Baird 2002, Koski 2004). The first full-time commercial whale-watching vessel began frequent service in 1987 (Baird 2002). Activity expanded to about 13 active vessels (defined as making more than one trip per week) and 15,000 customers by 1988 (Osborne 1991), then jumped sharply from 1989 to 1998, when vessel numbers grew to about 80 boats and passenger loads increased to about half a million customers per year (Osborne et al. 2002). Small reductions in the numbers of companies, active boats, and passengers have occurred since then. About 39 companies with 73 boats were active in 2004 and 2005 (Koski 2004, 2006); passenger levels were estimated at 450,000 people in both 2001 and 2002 (K. Koski, unpubl. data). Most companies belong to an industry organization known as the Whale Watch Operators Association Northwest, which was formed in 1994 to establish a set of whale viewing guidelines for commercial operators and to improve communication among companies (Whale Watch Operators Association Northwest 2003). The majority of commercial vessels were based in Washington during the 1980s, but this has gradually shifted and Canadian boats comprised 74% of the industry in 2005 (Koski 2006). Most companies are based in Victoria or the San Juan Islands, but others operate from Bellingham, La Conner, Everett, Port Townsend, Anacortes, and Vancouver. Commercial whale-watching boats range in size and configuration from open vessels measuring under 7 m in length and capable of holding 6-16 people to large 30-m-long passenger craft that can carry up to 280 customers. Many boats routinely make two or three trips per day to view whales. Commercial kayaking operations include about six active companies that are focused on whale
watching, plus another 18 companies or so that occasionally view whales (K. Koski, pers. comm.). At least one business offers occasional airplane viewing. The San Juan Islands and adjacent waters also attract large numbers of private boaters for recreational activities including cruising, fishing and diving. Many of these participate in viewing whales whenever the opportunity arises. Currently, about 61% of the craft seen with whales are commercially operated, with the remainder privately owned (Koski 2006). Additionally, private floatplanes, helicopters, and small aircraft take regular advantage of opportunities to view whales (Marine Mammal Monitoring Project 2002).

Hoyt (2001) assessed the value of the overall whale-watching industry in Washington at US$13.6 million (commercial boat-based viewing, $9.6 million; land-based viewing, $4.0 million) and in British Columbia at US$69.1 million (commercial boat-based viewing, $68.4 million; land-based viewing, $0.7 million) in 1998, based on estimated customer expenditures for tours, food, travel, accommodations, and other expenses. An estimated 60-80% of this value likely originated from the viewing of killer whales in the Georgia Basin and Puget Sound (R. W. Osborne, pers. comm.). More recent estimates of the economic value of whale watching in the region are unavailable. Expenditures by the users of private whale-watching vessels are also unknown.

The growth of whale watching during the past two decades has meant that killer whales in the region are experiencing increased exposure to vessel traffic and sound (see Other Vessels for a historical context on exposure). Not only do greater numbers of boats accompany the whales for longer periods of the day, but there has also been a gradual lengthening of the viewing season. Commercial viewing activity during the summer now routinely extends from 9:00 a.m. to 9:00 p.m., with the heaviest pressure between 10:00 a.m. and 12:00 p.m. and again from 2:00 p.m. to 5:00 p.m. (Koski 2004, 2006). However, some viewing may begin as early as 6:00 a.m. (Bain 2002) and more companies are offering sunset trips that stay out until nearly 10:00 p.m. Thus, many resident whales are commonly accompanied by boats throughout much or all of the day. The commercial whale-watching season now usually begins in April, is heaviest during May-September, and largely winds down in October, but a small amount of traffic occurs throughout the winter and early spring whenever whales are present (Koski 2004). Viewing by private craft follows a similar seasonal pattern. J pod is considered the most commonly viewed pod, with L pod being the least viewed (Bain 2002; K. Koski, pers. comm.; R. W. Osborne, pers. comm.).

The mean number of vessels following groups of killer whales at any one time during the peak summer months increased from five boats in 1990 to 18-26 boats from 1996-2005 (Osborne et al. 1999, Baird 2001, Erbe 2002, Marine Mammal Monitoring Project 2002, Koski 2004, 2006). However, the whales sometimes attract much larger numbers of vessels. Annual maximum counts of 72-120 boats were made near whales from 1998-2005 (Koski 2004, 2006). In these cases, commercial vessels totaled no more than 35 craft, thus the majority of boats present were privately owned. Baird (2002) described one instance of a fleet of 76 boats that simultaneously viewed about 18 members of K pod as they rested along the west side of San Juan Island in 1997. The ring of boats surrounding the whales included kayaks, sailboats, and a wide assortment of different-sized powerboats measuring up to about 30 m. Unusual occurrences of whales have the potential to draw even greater numbers of vessels. The month-long presence of
Killer whales at Dyes Inlet in Bremerton in the autumn of 1997 attracted up to 500 private whale-watching boats on weekends.

Worries that whale watching may be disruptive to killer whales date back to the 1970s and early 1980s, when viewing by relatively small numbers of vessels became routine (Kruse 1991). NMFS Northwest Region established whale watch guidelines in 1981 in response to concerns about vessel approaches to marine mammals, however, these were primarily for gray whales. The expansion of commercial and private viewing in recent years has greatly added to concerns (Osborne 1991, Duffus and Deardon 1993, Lien 2001, Erbe 2002, Williams et al. 2002a, 2002b). The Southern Residents in particular have been exposed to sound generated by whale-watching vessels since the early 1990s (Bain 2002). This has caused whale-watching activity to be cited as possibly an important contributing factor in the recent decline of this population (Baird 2001, Bain 2002, Krahn et al. 2002, Wiles 2004). Whale-watching vessels can produce high levels of underwater sound in close proximity to the animals. Acoustic outputs vary with vessel and engine type and become “louder” as speed increases (Bain 2002, Erbe 2002). Outboard-powered vessels operating at full speed produce estimated rms sound-pressure levels of about 160-175 decibels with reference to one microPascal at one meter (dB re 1 µPa hereafter) (Bain 2002, Erbe 2002). Inflatables with outboard engines are slightly “louder” than rigid-hull powerboats with inboard or stern-drive engines (Erbe 2002). Bain (2002) reported that the shift in predominance from American to Canadian-owned commercial craft during the 1990s has likely led to whales experiencing higher ambient noise levels in some frequency bands. Many Canadian boats are small outboard powered craft, whereas most American vessels are larger and diesel powered. By modeling vessel sounds, Erbe (2002) predicted that the sounds of fast boats are audible to killer whales at distances of up to 16 km, mask their calls up to 14 km away, elicit behavioral responses within 200 m, and cause temporary hearing impairment after 30-50 minutes of exposure within 450 m. For boats moving at slow speeds, the estimated ranges fall to 1 km for audibility and masking, 50 m for behavioral reactions, and 20 m for temporary hearing loss. It should be noted that underwater sound propagation can vary considerably depending on water depth and bottom type, thus acoustic measurements may not be applicable between locations (Richardson et al. 1995).

Several studies have linked vessels with short-term behavioral changes in northern and Southern Resident killer whales (Kruse 1991, Kriete 2002, Williams et al. 2002a, 2002b, Foote et al. 2004, Bain et al. 2006) although whether it is the presence and activity of the vessel, the sounds of the vessel or a combination these factors is not well understood. Individual whales have been observed to react in a variety of ways to whale-watching vessels. Responses include swimming faster, adopting less predictable travel paths, making shorter or longer dives, moving into open water, and altering normal patterns of behavior at the surface (Kruse 1991; Williams et al. 2002a; Bain et al. 2006), while in some cases, no disturbance seems to occur (R. Williams, unpubl. data). Avoidance tactics often vary between encounters and the sexes, with the number of vessels present and their proximity, activity, size, and “loudness” affecting the reaction of the whales (Williams et al. 2002a, 2002b). Avoidance patterns often become more pronounced as boats approach closer. Kruse (1991) observed that Northern Resident whales sometimes reacted even to the approach of a single boat to within 400 m. This study also reported a lack of habituation to boat traffic over the course of one summer. However, further research by Williams et al. (2001, 2002a, 2002b) indicated a reduction in the intensity of Northern Resident
responses to vessels between the mid-1980s and mid-1990s, possibly because of gradual habitation, changes in the avoidance responses of the whales, or sampling differences between the two studies. Bain et al. (2006) found that behavior of Southern Residents in the presence of vessels was consistent with that observed in Northern Residents regarding inhibition of feeding behavior, horizontal avoidance, and changes in surface active behavior. Foote et al. (2004) reported that call duration in the presence of whale-watching boats increased by 10-15% in each of the Southern Resident pods between 1989-1992 and 2001-2003, suggesting that animals were compensating for their noisier environment. Disturbance by whale-watching craft has also been noted to cause newborn calves to separate briefly from their mothers’ sides, which leads to greater energy expenditures by the calves (J. P. Schroeder, pers. comm.).

Transient killer whales also receive considerable viewing pressure when they venture into the Georgia Basin and Puget Sound (Baird 2001). No studies have focused on their behavioral responses to whale-watching vessels to determine whether they resemble those of residents. Because transients may depend heavily on passive listening for prey detection (Barrett-Lennard et al. 1996), their foraging success is more likely affected by vessel presence than with residents (Ford and Ellis 1999, Baird 2001).

Vessels engaged in whale watching activities generally employ two methods for approaching and viewing killer whales, both of which are in compliance with viewing guidelines (see below) when performed correctly. “Paralleling” involves a boat that slowly cruises alongside the whales, preferably at a distance of greater than 100 m, as specified under current guidelines. Another technique known as “repositioning” is done after the whales have passed a vessel by at least 800 m. The vessel then slowly engages its engines and travels at 5-7 knots until it is well behind and outside of the whales by about 1,500 m. It then speeds up and makes an arc outside of the whales, traveling 1.5-3 km ahead whereupon it moves back towards the whales’ expected route. When about 1,500 m from their path, the vessel slows to 5-7 knots and travels forward to position itself about 100 m outside and offshore of the whales’ anticipated path. The vessel then waits for the whales to arrive with its engines off or in idle, but continues to adjust its position as necessary to stay at least 100 m from their route to prevent having the whales travel underneath the vessel. Sometimes vessels either intentionally or unintentionally end up in the path of the whales, which is an infraction of the guidelines. Most guideline infractions occur using the repositioning technique (K. Koski, pers. comm.).

A third method known as “leapfrogging” was commonly employed until about 1999, when its use became discouraged. It involved a vessel that moved ahead of the whales by paralleling them for some distance at a faster speed (Williams et al. 2002b). The vessel then turned 90º to place itself directly in the whales’ anticipated path and waited for their approach while sitting in a stationary position with its engines put in idle or turned off. If the whales maintained their approximate travel course, they often swam closely past the boat or even underneath it, providing a close-up viewing opportunity. Leapfrogging is not consistent with the recommended viewing guidelines, but still occurs occasionally by private boaters (K. Koski, pers. comm.). All three styles of watching can induce evasive responses by the whales, but leapfrogging appears to cause greater path deviation (Williams et al. 2002a, 2002b). Vessels speeding up to leapfrog also emit greater sound levels that are of higher frequency, and therefore have greater potential to mask communication in the whales than paralleling craft or stationary vessels sitting with the engines.
Researchers and photographers during the 1970s suspected that their own vessels affected killer whale behavior and developed an unofficial code of conduct intended to reduce the impacts of their activity on the whales (Bain 2002). These initial rules addressed the proximity between vessels and whales, vessel speeds, and the orientation of vessels relative to whales. As whale watching in Washington and southern British Columbia became increasingly popular, a set of voluntary guidelines was established in the early 1980s by NMFS to instruct commercial operators and recreational boaters on appropriate viewing practices. These also functioned as a proactive alternative to stricter legal enforcement of American and Canadian regulations (i.e., the Marine Mammal Protection Act and Fisheries Act, respectively), which prohibit harassment of the whales. In the late 1980s The Whale Museum also became involved in whale watching guidelines. In 1994, the newly formed Whale Watch Operators Association Northwest prepared an improved set of guidelines aimed primarily at commercial operators (Whale Watch Operators Association Northwest 2003). Regular review and updating of the guidelines has occurred since then. The current “Be Whale Wise” guidelines (Appendix A) were issued in 2006 with input from the operators association, monitoring groups, whale advocacy groups, and governmental agencies, and are supported by 20 partner groups. These guidelines suggest that boaters parallel whales no closer than about 100 m, approach the animals slowly from the side rather than from the front or rear, and avoid putting their vessel within about 400 m in front of or behind the whales. Vessels are also recommended to reduce their speed to about 13 km/hr within about 400 m of the whales and to remain on the outer side of whales near shore. A variety of other recommendations are also provided. Two voluntary no-boat areas off San Juan Island were designated for the whales and commercial operators have agreed not to accompany whales into these areas, an action that many private boaters follow as well. The first is a ½-mile (800 m)-wide zone along a 3-km stretch of shore centered on the Lime Kiln lighthouse. The area was designated in 1996 to facilitate shore-based viewing of whales and to reduce vessel presence in an area used preferentially by the whales for feeding, traveling, and resting. The second is a ¼-mile (400 m)-wide zone along much of the west coast of San Juan Island from Eagle Point to Mitchell Point. This was established in 1999 for the purpose of giving whales uninterrupted access to inshore habitats.

Most commercial whale-watching boats generally appear to honor the guidelines, with overall adherence rates improving over time (K. Koski, pers. comm.). However, incidents where the guidelines are not followed do occur (Table 11). A greater problem lies with recreational boaters, who are much less likely to know about the guidelines and proper viewing etiquette (Lien 2001, Erbe 2002). As a result, several programs have been established to improve the awareness and compliance of private whale watchers, but these have had a beneficial impact on commercial operators as well. In Washington, the Soundwatch Boater Education Program was created by The Whale Museum and has operated around the San Juan Islands since 1993, largely through private grants and donations. A Canadian counterpart program known as the Marine Mammal Monitoring Project (M3) began in 2001 through the Veins of Life Watershed Society, with principal funding from the Canadian federal government. Both programs work cooperatively in the waters of both countries. In Johnstone Strait, a similar program known as Straitwatch has operated under the guidance of the Johnstone Strait Killer Whale Interpretive...
Centre Society and currently under Cetus Research and Conservation. Additionally, a BC Parks warden project started in 1982 monitors the Robson Bight Michael Bigg Ecological Reserve from a distance and asks boaters to avoid the area. These programs educate the boating public through several methods, the most visible of which is the use of small monitoring boats that are on the water with whale-watching vessels on a daily basis during the peak whale-watching season. Crews do not have enforcement capability, but monitor and gather data on boater activities and inform boat operators of whale-watching guidelines. Monitoring groups also record incidents of commercial craft not following the guidelines and provide feedback directly to the industry via “report cards.” Program staff approach recreational vessels entering an area with whales and distribute informational materials and give public presentations to user groups off the water. These programs have been very successful in improving the overall behavior of recreational and commercial whale watchers, especially when their monitoring vessels are operating on the scene (J. Smith, unpubl. data; K. Koski, pers. comm.). While the monitoring data is useful for characterizing some trends in whale watching activity, the sampling methodology is often opportunistic based on the multiple activities the groups conduct and caution should be used in interpreting the results regarding compliance with the guidelines.

Aircraft are not specifically mentioned in the “Be Whale Wise” guidelines. However, recommendations for aircraft are incorporated into a broader set of regional whale-watching guidelines prepared by the NMFS. These advise aircraft to maintain a minimum altitude of 300 m (1,000 ft) above all marine mammals, including killer whales, and to not circle or hover over the animals. Violations of these recommendations have dramatically risen in recent years and now represent about 10% of all incidents observed (Marine Mammal Monitoring Project 2002; Koski 2004, 2006).

The potential impacts of whale watching on killer whales remain controversial and inadequately understood. Although numerous short-term behavioral responses to whale-watching vessels have been documented, no studies have yet demonstrated a long-term adverse effect from whale watching on the health of any killer whale population in the northeastern Pacific. Both resident populations have shown strong site fidelity to their traditional summer ranges despite more than 25 years of whale-watching activity (as well as even longer periods of intense commercial fishing vessel activity; see Other Vessels). Furthermore, Northern Resident abundance increased throughout much of this period, suggesting that this population was not affected to any great extent until perhaps recently. The recent decline of the Southern Resident population does not appear to follow a simple cause-and-effect relationship with the expansion of whale watching. While the statistical analyses of Bain (2002) most strongly indicated that the whale-watching fleet’s buildup tracked the decline of the population from 1991-2001, Bain (2002) speculated that a complex relationship with additional variables might be at work. Further confounding the matter is the fact that the heaviest watched pod (J pod) has shown an overall increasing trend in numbers since the 1970s and is currently at its highest recorded number. In contrast, L pod is considered the least viewed pod, but is the only one to undergo a substantial and continuing decline since 1996. It is important to note that research findings on the responses of the Northern Residents to vessel traffic are not necessarily applicable to the Southern Residents, which are
Table 11. Types and relative occurrence of infractions of voluntary whale-watching guidelines witnessed by the Soundwatch Boater Education Program in Washington and southern British Columbia, 1998-2005 (Koski 2004, 2006). Infractions were committed by commercial and recreational vessels, kayaks, and aircraft in the act of whale watching, as well as research vessels.

<table>
<thead>
<tr>
<th>Type of infraction</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within the 400-m-wide San Juan Island no-boat zone</td>
<td>39</td>
<td>26</td>
<td>17</td>
<td>17</td>
<td>7</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Leapfrogging</td>
<td>37</td>
<td>31</td>
<td>23</td>
<td>1</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Under power within 100 m of whales</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Inshore of whales</td>
<td>5</td>
<td>29</td>
<td>24</td>
<td>25</td>
<td>19</td>
<td>16</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Crossing the path of whales</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Aircraft within 300 m of whales</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Chasing or pursuing whales</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td><1</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Within the 800-m-wide Lime Kiln no-boat zone</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Within 180 m of the San Juan Islands National Wildlife Refuge</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>5</td>
<td>15</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Repositioning to be within 100 m of whales</td>
<td>7</td>
<td>7</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Within 200 m of shore with whales present</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td><1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parked in the path of whales</td>
<td>26</td>
<td>24</td>
<td>17</td>
<td>19</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First approach of whales from head-on, behind, or shore</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traveling fast (>5-7 knots) within 400 m of whales</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kayaks spread out with whales present</td>
<td><1</td>
<td>3</td>
<td>0</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kayaks with whales outside the 400-m-wide San Juan Island no-boat zone</td>
<td><1</td>
<td>1</td>
<td>0</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kayaks paddling within 100 m of whales</td>
<td>3</td>
<td>0</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Total number of observed incidents</td>
<td>398</td>
<td>791</td>
<td>653</td>
<td>533</td>
<td>259</td>
<td>373</td>
<td>761</td>
<td>957</td>
</tr>
<tr>
<td>Estimated observation time (hours)</td>
<td>426</td>
<td>510</td>
<td>426</td>
<td>486</td>
<td>378</td>
<td>312</td>
<td>486</td>
<td>564</td>
</tr>
</tbody>
</table>

* Percent of infractions

- During 1998-2001, Soundwatch operated an average of 7 days per week from May to September. During 2002, it operated an average of 3 days per week from May to September. During 2003-2005, it operated an average of 5 days per week from June to September.
- Category was not used during all years.

Exposed to much heavier viewing pressure (Williams et al. 2002a). In fact the frequent presence of vessels around the Southern Residents has hindered researchers from studying the whales’ behavior in the absence of vessels present to permit comparisons. Some researchers believe that the Southern Residents are more habituated to vessel traffic and have perhaps adapted to some of its adverse impacts. Habituation, however, is a complex issue and even if whales have adapted and don’t overtly show reactions (i.e., tail slaps, changes in swimming patterns) to vessels, there may still be effects. Concerns remain that populations may be experiencing subtle cumulative detrimental effects resulting from frequent short-term disturbance caused by whale watching. If recent levels of whale watching are indeed problematic for the Southern Residents, the population has much less opportunity than the region’s other killer whale communities to relocate to other productive feeding areas with less disturbance (Bain 2002).
Other vessels. The inland waters of Washington and southern British Columbia formerly supported a major commercial fishing industry centered on salmon, halibut, and other groundfish that began rapid expansion in the late 1880s and 1890s. Motorized fishing vessels were introduced in 1903 and probably resulted in substantial noise exposure for the region’s killer whales by the 1910s or 1920s. Numbers of non-tribal commercial fishing boats in the greater Puget Sound area remained high through the mid-1970s, after which a steady downward trend occurred due to changes in fishing regulations and declining salmon abundance. Numbers of commercial salmon fishing licenses in this area, which generally reflect the numbers of non-tribal vessels in operation, fell from 4,132 in 1974 to 286 in 2006 (D. Noviello, unpubl. data).

During the peak decades of activity, under liberal fishing seasons, boats congregated in large numbers on productive fishing grounds for periods of weeks or months, especially from May through October. Little information is available on the effects of commercial fishing boats on killer whales during this time. However, the sound generated by the fleet was intense (K. C. Balcomb, pers. comm.) and the localized presence of so many vessels must have been significant at times. Observations from the 1970s indicate that the whales regularly mingled with commercial fishing vessels (K. C. Balcomb, pers. comm.). This information suggests that the Southern Residents were impacted by vessel effects for a number of decades before the buildup of commercial whale watching. However, effects from commercial fishing boats have undoubtedly declined with the demise of the fishing industry and their activities are different from those of whale watching vessels targeting the whales.

In recent decades, commercial shipping traffic has become a major source of low frequency (5 to 500 Hz) human-generated sound in the world’s oceans (National Research Council 2003). The Georgia Basin and Puget Sound are among the busiest waterways in the world, with several thousand trips made per month by various types of commercial vessels. Haro Strait, which is frequently used by Southern Resident killer whales, is one of the region’s primary shipping lanes. Non-recreational vessel traffic in Puget Sound, the eastern Strait of Juan de Fuca, and the southern Strait of Georgia is dominated by cargo ships (34% of all traffic, as measured in total ship hours), passenger vessels (31%), tugs (17%), and tankers (9%) (Mintz and Filadelfo 2004a). The low-frequency sound radiated by these ships comes largely from cargo ships (71%), passenger vessels (13%), tugs (7%), and tankers (5%) (Mintz and Filadelfo 2004b). By comparison, traffic inside the western half of the Strait of Juan de Fuca and off the Washington coast is comprised mainly of cargo ships (51%), tugs (15%), tankers (14%), and fishing vessels (9%), with most sound coming from cargo ships (86%), tankers (6%), and tugs (5%) (Mintz and Filadelfo 2004a, 2004b). In both areas, Navy vessels typically make up 2-3% of the traffic and ≤1% of the radiated engine sound, because of their sound-reducing designs (this excludes sound associated with high-power mid-frequency tactical sonar use. Koski (2004, 2006) reported that commercial shipping vessels made up 1-2% of the craft recorded near Southern Resident whales in and around the San Juan Islands during the summers of 2003-2005. Recreational fishing boats remain common in the area and comprised 11% of the vessels observed in the vicinity of the Southern Residents from June-September 2003 (Koski 2004). When operating at slow speeds or in idle, these boats usually do not appear to disrupt the whales’ behavior (Krahn et al. 2004a).

Anthropogenic Sound. If sound levels received by marine mammals are high enough, temporary or permanent hearing loss may occur, and in severe cases, may result in hemorrhaging around the brain and ear bones. Killer whale hearing sensitivity ranges from 1 to 120 kHz with peak
sensitivities from 20 to 50 kHZ (Szymanski et al. 1999) and fully covers the bandwidth generally considered as mid-frequency (2 to 10 kHz). Threshold levels at which underwater anthropogenic sound negatively impacts hearing and behavior are poorly understood. In dolphins, the onset of temporary threshold shift has been estimated to occur at received sound pressure levels of 195 dB at 1 sec duration exposures (Schlundt et al. 2000, Finneran et al. 2005), while avoidance behaviors in several baleen whale species exposed to different sound sources, impulsive and low frequency sounds, have been observed at received levels of 140-160 dB (Malme et al. 1983, 1984, 1988, Ljungblad et al. 1988, Tyack and Clark 1998). Under certain conditions, the high sound pressure levels generated by some sonar may impact marine mammals (U.S. Department of Commerce and Secretary of the Navy 2001, Balcomb and Claridge 2001, Brownell et al. 2004, International Whaling Commission 2004).

Military mid-frequency sonar. Current tactical military sonar designs, such as the U.S. Navy’s AN/SQS-53C tactical sonar produce signals with source levels of 235 rms dB re 1 µPa at 1 m. Strandings of cetaceans have been linked to naval sonar use (U.S. Department of Commerce and Secretary of the Navy 2001). In March 2000, a multi-species stranding of 17 cetaceans was discovered in the Bahamas and coincided with ongoing naval activity involving tactical mid-frequency sonar. The 17 stranded animals comprised 9 Cuvier’s beaked whales, 3 Blainville’s beaked whales, 2 unidentified beaked whales, 2 minke whales (survived stranding and not examined) and 1 spotted dolphin (determined unrelated to the event). Gross findings during exams of the beaked whales that died included acute hemorrhage within the subarachnoid space, and lateral ventricles (U.S. Department of Commerce and Secretary of the Navy 2001). A hypothesized mechanism for sonar-related marine mammal strandings, particularly beaked whales, is the formation of nitrogen bubbles in diving mammals exposed to intense acoustic exposures (Jepson et al. 2003). Validating this hypothesis and describing the exposure conditions required to induce such gas emboli in marine mammals, including killer whales, requires further research.

The impacts of military mid-frequency sonar on killer whales have not been directly studied, but observations are available from an event that occurred in the Strait of Juan de Fuca and Haro Strait on 5 May 2003, when members of J pod were present off southwestern San Juan Island. A U.S. Navy guided-missile destroyer (USS Shoup) passed through the strait while operating its mid-frequency AN/SQS-53C sonar during a training exercise. Members of J pod were present in the strait and unusual behaviors by whales in response to the sound were reported by local researchers (NMFS 2004d, U.S. Navy, Pacific Fleet 2004). NOAA assessed the acoustic exposures and reported that it was unlikely that the whales experienced either temporary or permanent hearing loss. Based on the duration and received levels, and levels known to cause behavioral reactions in other cetaceans, J pod received exposure levels likely to cause behavioral disturbance, which is consistent with eyewitness accounts (NMFS 2004d).

Only a few Navy vessels operating in the greater Puget Sound area are equipped with mid-range frequency active sonar. Typical Navy mid-frequency active sonar use in Puget Sound is limited to pier-side system maintenance and training on designated ranges. As a precautionary measure, any ship, submarine or unit wanting to use active mid-frequency sonar in Puget Sound, including the Strait of Juan de Fuca, is required to obtain prior permission from the Commander of the U.S. Pacific Fleet.
Other military activities. Canadian military authorities maintain a munitions testing area near Bentinct Island and Pedder Bay at the southern tip of Vancouver Island. Underwater detonations are sometimes performed at the site and occurred on one occasion when J pod was less than 1.5 km away, which caused the whales to suddenly change their direction of travel (R. W. Baird, pers. comm.). The U.S. Navy operates several ordnance training locations in Puget Sound. Ordnance training activities include procedures to ensure marine mammals are not in the vicinity and likely have little impact on the Southern Residents.

Commercial sonar systems. Commercial sonar systems designed for fish finding, depth sounding, and sub-bottom profiling are widely used on civilian vessels and are often characterized by high operating frequencies, low power, narrow beam patterns, and short pulse lengths (National Research Council 2003). Frequencies fall between 1 and 500 kHz, thus some systems function within the hearing range of killer whales and may have masking effects. Little information is currently available on any potential impacts of multiple commercial sonars used in close proximity of killer whales, but impact zones would likely be very small, based on the high frequencies and short durations of most depth sounders and fish finders.

Seismic exploration. Seismic surveying is the primary exploration technique for detecting oil and gas deposits, fault structures, and other geological hazards in offshore areas. Surveys are carried out by ships towing one or two arrays of air-guns, which generate intense low-frequency sound pressure waves capable of penetrating the seafloor and are fired repetitively at 10-20-second intervals for extended periods (National Research Council 2003). Arrays hold up to 70 air-guns and commonly vary from 2,000-8,000 cu in (0.033-0.131 m³) in total size. Most of the energy from the guns is directed vertically downward, but significant sound emission also occurs horizontally. Downward directed pulses that enter the deep sound channel (about 800 m depth or more) can be detected at distances exceeding 3,000 km (Nieukirk et al. 2004). Peak pressure levels from air-guns usually range from 5-300 Hz and reach about 235-240 dB re 1 µPa (RMS, far field measurement) (National Research Council 2003) and most of the energy is below 500 Hz. Fish have experienced ear damage when exposed to air guns far more intensively than during typical seismic surveys (McCauley et al. 2003). In the United States, all seismic projects for oil and gas exploration and most research applications, with the potential to take marine mammals, are covered by incidental harassment authorizations under the MMPA.

Construction activities. In water construction activities such as pile driving can produce sound levels sufficient to disturb marine mammals under some conditions. Sound pressure levels of from 190 to 220 dB re 1 µPa have been reported for piles of different sizes in a number of studies. The majority of the sound energy associated with pile driving is in the low frequency range, < 1000 Hz (Illingworth and Rodkin, Inc. 2001, 2004, Reyff et al. 2002, Reyff 2003).

Dredging operations also have the potential to emit sounds at levels that could disturb marine mammals. Depending on the type of dredge, peak sound pressure levels from 100 to 140 dB re 1 µPa were reported in one study (Clarke et al. 2003). Similar to pile driving, most of the sound energy associated with dredging is in the low frequency range, < 1000 Hz (Clarke et al. 2003).
Several techniques have been adopted to reduce the sound pressure levels associated with in-water construction activities. For example, a 6-inch block of wood placed between the pile and the impact hammer used in combination with a bubble curtain can reduce sound pressure levels by about 20 dB. Alternatively, pile driving with vibratory hammers produces peak pressures that are about 17 dB lower than those generated by impact hammers (Nedwell and Edwards 2002). In addition, not scheduling in-water construction activities during times when marine mammals may be present reduces the risk of disturbance.

Underwater acoustic devices. Acoustic harassment devices (AHDs) are another source of sound that may be disruptive to killer whales in Washington and British Columbia. AHDs used at salmon aquaculture farms emit “loud” signals that are intended to displace harbor seals and sea lions away from the farms, thereby deterring predation (Petras 2003), but can cause strong avoidance responses in cetaceans as well (Olesiuk et al. 2002). Morton and Symonds (2002) described one model that broadcast a 10 kHz signal at 194 dB re 1 µPa at 1 m and was potentially audible in open water for up to 50 km. During the early 1990s, the devices were installed at a number of salmon farms in Washington (including Cypress Island, Port Angeles, Rich Passage off Bainbridge Island, and Squaxin Island) and British Columbia, but were phased out of operation in Washington after just a few years (D. Swecker, pers. comm.; J. K. B. Ford, pers. comm.). Activation of the devices at a farm near northeastern Vancouver Island corresponded with drastic declines in the use of nearby passages and inlets by both resident and transient whales (Morton and Symonds 2002). It is unknown whether the devices ever produced similar impacts on killer whales in Washington or elsewhere in British Columbia. The only AHD still in use in Washington operates at the Ballard locks in Seattle, where the NMFS utilizes it to deter sea lions.

Vessel strikes. Collisions between killer whales and vessels are rare in Washington and British Columbia, with several incidents documented since the 1990s (see Incidental Human-Related Mortality). Two strikes, and probably a third, have resulted in fatalities in recent decades.

Oil Spills

Exposure to petroleum hydrocarbons released into the marine environment via oil spills and other discharge sources represents another potentially serious health threat for killer whales in the northeastern Pacific. Marine mammals are generally able to metabolize and excrete limited amounts of hydrocarbons, but acute or chronic exposure poses greater toxicological risks (Grant and Ross 2002). Unlike humans, cetaceans have a thickened epidermis that greatly reduces the likelihood of petroleum toxicity from skin contact with oiled waters (Geraci 1990, O’Shea and Aguilar 2001). Inhalation of vapors at the water’s surface and ingestion of hydrocarbons during feeding are more likely pathways of exposure. Transient killer whales may be especially vulnerable after consuming prey debilitated by oil (Matkin and Saulitis 1997). Matkin et al. (1994) reported that killer whales did not attempt to avoid oil-sheened waters following the Exxon Valdez oil spill in Alaska. In marine mammals, acute exposure to petroleum products can cause changes in behavior and reduced activity, inflammation of the mucous membranes, lung congestion, pneumonia, liver disorders, and neurological damage (Geraci and St. Aubin 1990). Evidence of direct mortality in killer whales from spills is described elsewhere in this report (see
Oil spills are also potentially destructive to prey populations and therefore may adversely affect killer whales by reducing food availability.

Due to its proximity to Alaska’s crude oil supply, Puget Sound is one of the leading petroleum refining centers in the U.S., with about 15 billion gallons of crude oil and refined petroleum products transported through it annually (Puget Sound Action Team 2005a). Inbound oil tankers carry crude oil to four major refineries in the sound, while outbound tankers move refined oil products to destinations along the U.S. west coast (Neel et al. 1997). In 2005, a total of 716 oil tankers passed through Washington’s waters bound for ports in Puget Sound, Canada, and along the Columbia River (Washington State Department of Ecology 2006). This volume of shipping traffic puts the region at risk of having a catastrophic oil spill. The proposed removal of the current moratorium on oil and gas exploration and development off the British Columbia coast will increase the danger of a major accident in the region. The possibility of a large spill is considered one of the most important short-term threats to killer whales and other coastal organisms in the northeastern Pacific (Krahn et al. 2002).

Neel et al. (1997) reported that shipping accidents were responsible for the largest volume (59%; 3.4 million gallons [12.9 million liters]) of oil discharged during major spills in Washington from 1970-1996. Other sources were refineries and associated production facilities (27%; 1.5 million gallons [5.7 million liters]) and pipelines (14%; 800,000 gallons [3.0 million liters]). There have been eight major oil tanker spills exceeding 100,000 gallons (378,500 liters) in the state’s coastal waters and on the Columbia River since the 1960s, with the largest estimated at 2.3 million gallons (8.7 million liters) (Table 12). Grant and Ross (2002) did not report any major vessel spills from British Columbia during this same period, but at least one of 100,000 gallons (379,000 liters) is known to have occurred in Canadian waters at the mouth of the Strait of Juan de Fuca in 1991 (Neel et al. 1997). In addition to these incidents, there have been a number of near accidents resulting from vessel groundings, collisions, power loss, or poor vessel condition (Neel et al. 1997).

Puget Sound’s four oil refineries are coastally located at Anacortes (Shell Oil and Texaco), Ferndale (Mobil Oil), and Tacoma (US Oil). Four major spills have occurred at two of these facilities (Table 12), with each causing some discharge of petroleum into marine waters (D. Doty, pers. comm.). Pipelines connecting to refineries and oil terminals at ports represent another potential source of coastal spills. Pipeline leaks have caused several major spills in western Washington, but only the 1999 Olympic spill resulted in any discharge to marine waters (Neel et al. 1997; G. Lee, pers. comm.).

During the late 1980s and early 1990s, Washington significantly upgraded its efforts to prevent oil spills in response to increased numbers of spills in the state and the Exxon Valdez accident in Alaska. A number of state, provincial, and federal agencies now work to reduce the likelihood of spills, as does the regional Oil Spill Task Force, which was formed in 1989. In addition, there is an international body, the International Maritime Organization (IMO), which has adopted conventions, protocols, codes and recommendations concerning maritime safety, the prevention of pollution and related matters, including specific measures regarding oil spills. National
Table 12. Oil spills of 100,000 gallons or more from vessels, production facilities, and pipelines in Washington from the 1960s to 2003 (from Neel et al. 1997, Puget Sound Water Quality Action Team 2002).

<table>
<thead>
<tr>
<th>Year</th>
<th>Incident name</th>
<th>Location</th>
<th>Amount spilled (gallons)</th>
<th>Type of product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>General M. C. Meiggs</td>
<td>Cape Flattery</td>
<td>2,300,000</td>
<td>Heavy fuel oil</td>
</tr>
<tr>
<td>1964</td>
<td>United Transportation barge</td>
<td>n. Grays Harbor Co.</td>
<td>1,200,000</td>
<td>Diesel fuel</td>
</tr>
<tr>
<td>1985</td>
<td>ARCO Anchorage</td>
<td>Port Angeles</td>
<td>239,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>1988</td>
<td>Nestucca barge</td>
<td>Ocean Shores</td>
<td>231,000</td>
<td>Heavy fuel oil</td>
</tr>
<tr>
<td>1971</td>
<td>United Transportation barge</td>
<td>Skagit County</td>
<td>230,000</td>
<td>Diesel fuel</td>
</tr>
<tr>
<td>1984</td>
<td>SS Mobil Oil tanker</td>
<td>Columbia R., Clark Co.</td>
<td>200,000</td>
<td>Heavy fuel oil</td>
</tr>
<tr>
<td>1978</td>
<td>Columbia River barge</td>
<td>Klickitat County</td>
<td>100,000</td>
<td>Diesel fuel</td>
</tr>
<tr>
<td>1991</td>
<td>Tenyo Maru</td>
<td>Strait of Juan de Fuca*</td>
<td>100,000</td>
<td>Heavy fuel oil, diesel</td>
</tr>
<tr>
<td>Refineries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>US Oil</td>
<td>Tacoma</td>
<td>600,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>1993</td>
<td>US Oil</td>
<td>Tacoma</td>
<td>264,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>1991</td>
<td>Texaco</td>
<td>Anacortes</td>
<td>210,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>1990</td>
<td>Texaco</td>
<td>Anacortes</td>
<td>130,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>Pipelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>Trans-Mountain</td>
<td>Whatcom County</td>
<td>460,000</td>
<td>Crude oil</td>
</tr>
<tr>
<td>1999</td>
<td>Olympic</td>
<td>Bellingham</td>
<td>277,000</td>
<td>Gasoline</td>
</tr>
<tr>
<td>1983</td>
<td>Olympic</td>
<td>Skagit County</td>
<td>168,000</td>
<td>Diesel fuel</td>
</tr>
</tbody>
</table>

*Spill occurred in Canadian waters at the mouth of the Strait of Juan de Fuca and flowed into Washington.

Statutes enacted in the early 1990s, including the U.S.’s Oil Pollution Act in 1990 (OPA) and the Canada Shipping Act in 1993, have also been beneficial in creating spill prevention and response standards. OPA serves as the leading federal regulatory mechanism to prevent, respond to, and address damage caused by oil spills and created the Oil Spill Liability Trust Fund. OPA requires that all tank vessels greater than 5,000 gross tons operating in the U.S. waters be fitted with a double hull before January 2015. There is a Northwest Area Committee (NWAC) that develops and implements a NWAC plan. There are also a number of industry initiated safety practices.

Since 1999, Washington State has maintained a rescue tugboat at Neah Bay for about 225 days per year during the winter months to aid disabled vessels and thereby prevent oil spills. These measures appear to have been helpful in reducing the number and size of spills since 1991, but continued vigilance is needed (Neel et al. 1997). In general, Washington’s outer coast, the Strait of Juan de Fuca, and areas near the state’s major refineries are considered the locations most at risk of major spills (Neel et al. 1997).

Chronic small-scale discharges of oil into oceans greatly exceed the volume released by major spills (Clark 1997) and represent another potential concern. Such discharges originate from numerous sources, such as the dumping of tank washings and ballast water by tankers, the release of bilge and fuel oil from general shipping, and the disposal of municipal and industrial wastes. Chronic oil pollution kills large numbers of seabirds (e.g., Wiese and Robertson 2004),...
but its impact on killer whales and other marine mammals is poorly documented. The long-term effects of repeated ingestion of sub-lethal quantities of petroleum hydrocarbons on marine mammals are also unknown.

Disease

Infectious diseases are not known to limit any killer whale population, nor have epidemics been recorded in the species. Nevertheless, a variety of pathogens have been identified in killer whales, while others occur in sympatric marine mammal species and may therefore be transmittable to killer whales (Buck et al. 1993, Gaydos et al. 2004). Several highly virulent diseases have emerged in recent years as threats to marine mammal populations. Of particular concern are several types of virus of the genus *Morbillivirus*. These include 1) dolphin morbillivirus, which killed several thousand striped dolphins (*Stenella coeruleoalba*) in the Mediterranean Sea during the early 1990s (Aguilar and Borrell 1994b) and unknown numbers of bottlenose dolphins in the western Atlantic during the late 1980s and Gulf of Mexico in the mid-1990s (Kennedy 1999, 2001), 2) phocine distemper virus, which produced large die-offs of harbor seals and gray seals in Europe in the late 1980s and 2002 (Hall et al. 1992, Jensen et al. 2002), and 3) canine distemper virus, which caused mass mortalities among Baikal seals (*Phoca sibirica*) in the late 1980s and Caspian seals (*P. caspica*) in 2000 (Kennedy et al. 2000, Kennedy 2001). PCB-caused suppression of the immune system is thought to have increased susceptibility to the virus in many of these cases (de Swart et al. 1996, Ross et al. 1996b, Ross 2002), although this conclusion is the subject of debate (O’Shea 2000a, 2000b, Ross et al. 2000b). Genetic inbreeding may have also played a role in the deaths of some infected striped dolphins (Valsecchi et al. 2004). Morbillivirus infections have been diagnosed in a variety of other marine mammals from the Atlantic, but caused little mortality in most instances (Kennedy 2001). Antibodies to dolphin morbillivirus have also been detected in common dolphins (*Delphinus delphis*) from southern California (Reidarson et al. 1998), placing the virus inside the ranges of transient and offshore killer whales and near the known southern limit of the Southern Resident community (Gaydos et al. 2004). Additionally, there have been recent detections of canine distemper virus in river otters in British Columbia (Mos et al. 2003) and evidence of exposure to a canine- or phocine-like morbillivirus in sea otters from the Olympic Peninsula (J. Davis, unpubl. data). Because of the mutation capabilities and species-jumping history of morbilliviruses, there is a possibility that these forms could infect killer whales even if they are not the dolphin type (J. Gaydos, pers. comm.). Limited testing evidence suggests that killer whales have not yet been affected by morbilliviruses in Washington, British Columbia, or elsewhere in the world (Van Bressem et al. 2001), although small sample sizes precludes a thorough assessment of this issue. The fact that Southern Resident killer whales are likely seronegative suggests that they may be vulnerable if exposed to such a virus (P. S. Ross, pers. comm.). Morbillivirus outbreaks are also of concern because of their potentially rapid rates of spread (i.e., up to 4,000 km per year) in marine environments (McCallum et al. 2003).

Other diseases such as *Brucella* spp. and cetacean poxvirus may impact killer whale populations by lowering reproductive success or causing greater mortality among calves (Gaydos et al. 2004). The Southern Resident community is perhaps the most vulnerable of the four populations in Washington and British Columbia to a serious disease outbreak due to its gregarious social nature, smaller population, seasonal concentration near the San Juan Islands, and high levels of
PCB contamination (Gaydos et al. 2004). Other contaminant levels, increasing ambient noise, and reduced prey are additional stressors, the cumulative effects of which increase the vulnerability of Southern Residents to a catastrophic disease event (J. P. Schroeder pers. comm.). Occasional harassment of other marine mammals by the Southern Residents represents a potential pathway of exposure to diseases (e.g., see Gaydos et al. 2005).

Cumulative Effects

It is not clear, and may be impossible to quantify or model, which of the threats or combination of threats the Southern Resident killer whale population is subject to is the most important to address relative to recovery. It is likely that there is a cumulative effect, which could be more pronounced due to the small size of the Southern Resident population. Disruption of foraging behavior, either from vessel traffic and sound, or reduction of preferred prey species may introduce a stressor exacerbating the immunosuppressive effects of accumulated contaminants in the blubber and other tissues of each individual killer whale. Adequate nutrition is the basis for maintaining homeostasis, but if a killer whale is unable to eat for some period of time due to anthropogenic stressors, blubber stores become mobilized leading to higher contaminant blood levels and increased negative effects to health and/or fecundity. Multiple stressors can be far deadlier than one and laboratory experiments address only a small part of the complexity that occurs in nature (Sih et al. 2004).

There are cumulative effects of chronic stressors within risk factors as well. The well-documented effects of contamination by persistent organic pollutants on both immunologic dysfunction and reproductive abnormalities (Table 9) indicate they are linked. PCBs and other organochlorines affect both immune and reproductive systems. While it may not be possible to discern which effects have the most significant impact, it may be a combination of effects on both systems or there may be age and sex differences in whether immune or reproductive functions are most affected. Obviously, no breeding will occur if reproductive age killer whales die of disease due to reduced immune capacity. Reduced survival of neonates may also result from cumulative effects of contaminant loads, immune dysfunction and other outside stressors.

Not all bacterial diseases cause death. Morbillivirus causes greater mortality than brucellosis, but a chronic brucellosis infection may cause stillborn calves and may eventually lead to death of the host due to secondary complications, generally related to an exhausted immune system. Some breeding can occur in spite of compromised immune systems. Polar bear studies (Skaare et al. 2002) indicate that birth rates and testosterone levels are reduced in contaminated animals. The immune system may become dysfunctional even at very low concentrations of contaminants and before other systems are compromised (Skaare et al. 2002).

Individual or cumulative effects of the threats that may be driving the decline in Southern Residents may have reduced an already small population to a size that has additional risks. Small populations of animals can experience a host of problems that result in decreased per capita birth rates (i.e., inverse density dependence), a phenomenon known as the Allee effect. Under such conditions, factors such as loss of genetic variability, genetic drift, demographic fluctuations, and declining opportunities for cooperative behavioral interactions can work alone or additively to cause the eventual extinction of populations that have fallen below a critical
density (Courchamp et al. 1999). A number of the killer whale communities in the northeastern Pacific contain fewer than 500 individuals, which is usually considered very small for discrete populations of most species (Barrett-Lennard and Ellis 2001, Frankham et al. 2002).

Small population sizes often increase the likelihood of inbreeding, which can lead to the accumulation of deleterious alleles, thus causing decreased reproductive rates, reduced adaptability to environmental hazards such as disease and pollution, and other problems (Barrett-Lennard and Ellis 2001, Valsecchi et al. 2004). Such effects are highly variable among species, with some strongly impacted and others much less so. While the killer whale communities in the northeastern Pacific contain relatively small numbers of animals, these communities appear adept at avoiding matings between members of the same pod. This may be an adaptation to small group size and suggests that the populations are genetically more viable when small than those of most species (Barrett-Lennard and Ellis 2001). Recent analyses indicate that the Southern Residents are no less genetically diverse than other resident populations (Hoelzel 2004). Thus, the Southern Residents may not have an immediate risk from inbreeding depression. However, because of the threats that may be responsible for its recent decline, this community now contains just 34 reproductively active individuals. The deaths of several adult males in J and K pods between 1995 and 1998 have left the females of L pod with only one fully mature adult male (J1) to mate with for several years. This situation could lead to a loss of genetic variability in the population (Center for Biological Diversity 2001, Krahn et al. 2004a), possibly resulting in inbreeding depression in the future. In recent years the dorsal fins of several males (K21, J26, and J27) have sprouted indicating they may have reached maturity.

Allee effects may influence small populations of killer whales in a variety of other ways that ultimately lower overall reproductive performance or survivorship. Because the species hunts cooperatively, declining group sizes may result in decreased foraging efficiency and energy acquisition per individual (e.g., Baird and Dill 1996). This may be particularly true for resident whales searching for aggregations of dispersed prey such as salmon. Changes in sex ratio and declines in various age cohorts may take on greater importance in small populations. For example, declines in numbers of breeding males, such as seen in the Southern Residents since 1987, may increase the difficulty that sexually receptive females have in finding suitable mating partners. Resident killer whales display some of the most advanced social behavior of any non-human mammal, as evidenced by their highly stable social groupings, complex vocalization patterns, the presence of long-lived post-reproductive females, and behaviors such as cooperative foraging, food sharing, alloparental care, matriarchal leadership, and innovative learning. Maintenance of minimal group sizes is therefore probably necessary in preserving beneficial social interactions and in raising young.
III. RECOVERY STRATEGY

The overall goal of a recovery plan is to meet the recovery criteria and address threats to allow removal from the List of Endangered and Threatened Wildlife (List). In light of the small population size, recent declines, life history and potential threats, it is challenging to identify the most immediate needs for conservation and recovery of Southern Resident killer whales. For many listed species of marine mammals, there is a primary cause of direct mortality that can be attributed to a particular source (e.g., ship strikes, fishery interactions, or harvest), but this is not the case for Southern Residents. It is unknown which of the threats has caused the decline or may have the most significant impact on recovery of the population. It may be a combination of threats or the cumulative effects that are the problem. In addition, there are inherent risks for small populations. This plan addresses each of the potential threats based on current knowledge.

To address the data gaps and uncertainties, there is an active research program underway. While researchers have been studying the Southern Residents for over 30 years, there has been increased interest and funding support in the last several years because of the status of the population. The research program administered by NOAA’s Northwest Fisheries Science Center has targeted specific questions that will assist in management and conservation. The research program is a long-term effort by many institutions and individuals and it will take time to discover answers. The management actions in this plan are based on the best available science and the current understanding of the threats. Because it is not possible at this time to identify exactly which actions will be required for recovery of the species, the plan represents an initial approach to begin addressing each of the threats.

Research and monitoring are key components of the plan and they will make an adaptive management approach possible. Recovery of Southern Resident killer whales is a long-term cooperative effort that will evolve as more is learned from research and monitoring. Continued monitoring of the status of the population will assist in evaluating the effectiveness of management actions. Research will help refine actions that have been implemented and identify new actions to fill data gaps about the threats. An adaptive management approach will also provide information to adjust priorities as conservation progresses and to modify and update the plan.

The 2004 BRT identified the factors that currently pose a risk for Southern Residents and discussed whether these might continue in the future. Important concerns included (1) reductions in quantity or quality of prey, (2) high levels of organochlorine contaminants and increasing levels of many “emerging” contaminants (e.g., brominated flame retardants), putting Southern Residents at risk for serious chronic effects similar to those demonstrated for other marine mammals (e.g., immune and reproductive system dysfunction), (3) sound and disturbance from vessel traffic, and (4) oil spills. The Recovery Program includes measures to address the various threats that have been identified, as well as other important efforts such as education and outreach, response to stranded killer whales, and coordination and cooperation.
IV. RECOVERY GOALS, OBJECTIVES AND CRITERIA

When a species is listed as threatened or endangered under the ESA, NMFS is required to develop and implement a recovery plan for the conservation and survival of the species. The three specific statutory requirements, set forth in section 4(f)(1)(B) of the ESA, are that each plan incorporate the following:

1. A description of the site specific management actions necessary to achieve the plan’s goal for the conservation and survival of the species;
2. Objective measurable criteria which when met would result in a determination, in accordance with the provisions of this section, that the species be removed from the list; and
3. Estimates of the time required and cost to carry out those measures needed to achieve the plan’s goal and to achieve intermediate steps toward that goal.

Recovery Goals
The ultimate goal of this recovery plan is to achieve the recovery of the Southern Resident killer whale distinct population segment (DPS), and its ecosystem, to a level sufficient to warrant its removal from the federal List of Endangered and Threatened Wildlife and Plants under the ESA. The intermediate goal is to reclassify the DPS from endangered to threatened.

To remove the Southern Residents from the federal List of Endangered and Threatened Wildlife and Plants under the ESA, NMFS must determine that they are not “likely to become endangered in the foreseeable future throughout all or a significant portion of its range.” To downlist the Southern Resident DPS from endangered to threatened, NMFS must determine that it is no longer “in danger of extinction throughout all or a significant portion of its range.” These determinations include consideration of the population’s abundance and demographic parameters, taken together with threats (as identified under the five listing factors considered for listing.)

Recovery Criteria
A decision to list or delist a species focuses on its biological performance and the threats to its existence. Our approach to developing objective measurable criteria focuses on two areas: performance of the population over a meaningful period of time (biological criteria) and the reduction of threats which may have caused the population decline or that limit recovery (threats criteria). Population parameters such as abundance, growth rate, and demographics (e.g., age and sex ratios and distribution of individuals among different subpopulations) indicate the status of the species and were all considered during the decision to list. The biological criteria described below are designed to measure these parameters. The criteria also take into consideration representation, resiliency and redundancy.

- Representation involves conserving the breadth of the genetic makeup of the species to conserve its adaptive capabilities,
- Resiliency involves ensuring that each population is sufficiently large to withstand stochastic events, and
- Redundancy involves ensuring a sufficient number of populations to provide a margin of safety for the species to withstand catastrophic events.
The threats criteria are designed to evaluate the five statutory listing factors (see *Potential Threats to Southern Resident Killer Whales*) described in the ESA listing determination for the species. These same factors must be considered in delisting, with objectives related to each factor included as part of the recovery criteria. The following sections provide the basis for the criteria and set out objective, measurable criteria for delisting and downlisting the Southern Resident DPS.

Biological Criteria

The task in making a listing or delisting determination is to project the future performance of a biological unit, in this case a DPS. For us to project long-term sustainability of Southern Resident killer whales, we must see (1) positive population growth (i.e., more individuals entering the population than being removed) over a time frame long enough to encompass expected environmental and stochastic variability, and (2) an adequate number of individuals of both sexes and mixed ages, distributed among the three pods, to make it unlikely the population will fall below a threshold at which it is in danger of extinction during inevitable periods of low survival or productivity. We developed the following biological criteria using life history information from the Southern Resident killer whale status reviews and population viability analyses (Krahn et al. 2002, 2004a). To gauge whether the biological parameters were realistic, we considered them in light of the performance of the Northern Resident killer whale population, which is listed as threatened by Canada, but is more robust than the Southern Resident population with a larger number of animals, matrilines, and clans. We also considered the Canadian draft recovery strategy for Southern Residents (Killer Whale Recovery Team 2005) and the proposed recovery plan for Steller sea lions (*Eumetopias jubatus*) recently published by NMFS (NMFS 2006b). In addition, we relied on the NMFS’ interim recovery planning guidance.

Researchers have documented periods of variable growth and decline in the Southern Resident population since 1974, when annual censuses began after the end of live captures for public display ended. Krahn et al. (2004a) examined growth patterns in the population and found that it increased from 71 to 83 whales between 1974 and 2003 at a mean annual rate of 0.4%. Within this 29-year trend, there were fluctuating periods of growth and decline (see *Status of Southern Resident Killer Whales*). From 1974 to 1980 the population increased at a mean rate of 2.6% per year, then declined at 2.8% per year until 1984, then increased at 2.3% per year until 1996, declined at 4.3% per year through 2001 and has increased by 2.5% per year in 2002 and 2003. For comparison, the neighboring Northern Resident population increased from 120 to 205 whales over the same time frame. From 1974 to 1991 the population grew at approximately 3.4% per year. From 1991 to 1997 population growth slowed to 3.0% per year resulting in a peak population of 220 animals (Killer Whale Recovery Team 2005). This was followed by a 2.2% annual decline from 1997 to 2003. The population trends of both the southern and northern communities are shown in Figures 8 and 13.

We considered whether the performance of the Northern Residents serves as an appropriate model for growth in a recovering killer whale population. For example, the Steller sea lion recovery plan relies on the performance of the eastern stock, which had sustained growth over an extended period, to set a target growth rate for the western stock. The Southern Resident
The Southern Residents grew at mean yearly rates of 2.6% for the six-year period from 1974-1980 and 2.3% during the 12-year period from 1984 to 1996. In recognition that the population has shown the ability to sustain a 2.3% rate of growth in the past we believe it to be the most appropriate growth measure for this population.

The longer a population sustains a positive growth rate, the more confident we can be that the population will continue to grow and become stable in the future and is resilient to stochastic events. Selecting an appropriate time frame depends on the past performance of the population and the environmental and stochastic factors affecting it. For example, the sea lion recovery plan adopts a time scale based on the Pacific Decadal Oscillation, which appears to have ecosystem-scale effects influencing the performance of Steller sea lions (NMFS 2006b). If average sea lion population growth remains positive over more than one decadal oscillation (i.e., 15 years) confidence grows that the threats to the population have been addressed and the population is sufficiently healthy and resilient to sustain itself regardless of environmental variability. If the positive growth rate is robust and is sustained over several decadal oscillations (i.e., 30 years) then the population can be considered for delisting.

We considered two factors in selecting a time frame for Southern Resident growth. The first is the fluctuating growth rates described above, and the uncertainty about their cause(s). Both of these concerns warrant a conservative time frame. The second is evidence that environmental fluctuations may be affecting Southern Resident survival. Krahn et al. (2002) looked at whether the North Pacific Decadal Oscillation may be influencing survival, but preliminary results did not support this hypothesis. Elements of their population viability analysis did reveal, however, a cyclic pattern in survival that was not random. Krahn et al. (2002 and 2004a) reported that the population has experienced an overall decline in survival since the collection of census data began in 1974, but the decline has not been linear. A “best fit” analysis for crude survival over all age and sex classes showed alternating periods of high and low survival forming a 14-year cycle, with seven years of high survival followed by seven years of low survival (Krahn et al. 2004a and Figures 9, 10, and 11). The analysis did not establish any causal relationships between potential contributing factors and changes in survival rates, but did show that all age and sex classes were affected, suggesting external influences.

The 14-year cycle of higher and lower survival provides the best information for selecting a time period that will encompass expected environmental variability. A period of 14 years also allows sufficient time for calves born at the beginning of the time period to achieve sexual maturity. As in the sea lion model, sustained population growth over the 14-year up and down cycle may provide some confidence that growth will continue into the future. Population growth sustained over the span of more than one cycle would indicate that the population is resilient and no longer in danger of extinction.

Delisting

Biological criteria

To remove the Southern Resident DPS from the federal List of Endangered and Threatened Wildlife and Plants under the ESA, NMFS must determine that the species is neither in danger of
extinction nor likely to become so “in the foreseeable future throughout all or a significant portion of its range.” To be considered for delisting, the following criterion must be met.

1. The Southern Resident DPS has exhibited an increasing population trend at an average growth rate of 2.3% per year for 28 years (two full cycles).

This criterion could be achieved under a variety of scenarios depending on when the time period starts. For example, beginning in 2001, with 81 animals and estimated average annual growth of 2.3% over the succeeding 28 years, would result in a population of about 155 animals in 2029.

Our confidence in the continued persistence of the Southern Residents depends not just on a demonstrated positive growth rate or an absolute number of animals, but also on the presence of an adequate number of individuals in all sex and age categories, distributed among the three pods, to ensure the population will not fall below a threshold leading to extinction during inevitable periods of low survival or productivity. At the time of listing, NMFS considered several demographic conditions that caused concern, including the small number of breeding males, possible reduced fecundity, and sub-adult survivorship in L pod. NMFS also considered the small population size which could make the population vulnerable to inbreeding. Thus, in addition to the criterion of a positive growth rate, we have developed a second set of criteria addressing demographic conditions of the population.

Survival rates, fecundity, calving interval, and sex and age class structure are among the useful demographic parameters for evaluating the status of a species. However, specific measures of these parameters have not been quantified for any stable non-threatened killer whale population against which the Southern Residents can be compared. One possible exception is the Northern Resident population, which has exhibited long-term growth and achieved some level of stability in recent years. Olesiuk et al. (2005) developed population models for Northern Residents during separate periods of unrestrained growth and of no net change. No major differences in reproductive parameters or the predicted sex and age structure existed between the two periods and their model may reflect the fundamental dynamics of a population under average conditions. Thus, when the first delisting criterion has been achieved for the Southern Resident DPS, comparing its population parameters to those of the Northern Residents may provide a suitable model for determining recovery.

Resident killer whale populations exhibit a unique social structure based on stable matrilines and somewhat more flexible groupings of closely related matrilines (pods). Based on studies of Northern Residents, breeding outside of closely related matrilines (i.e., between pods) appears to be the mechanism reducing the potentially detrimental effects of inbreeding within these small populations. For the Southern Resident DPS, there is concern that the number of adult males, particularly in J and K pods, is very low. A population with three pods and at least two adult males in each pod would provide greater breeding opportunities outside of closely related individuals and expand genetic representation. In addition, recent studies (Hauser 2006) indicate that while the three pods largely share the same core areas, there are pod differences and each pod uses additional unique areas. Continued presence of all three pods provides for some level of redundancy.
The current inter-calf interval among Southern Resident females appears to differ among pods and is longer than in the Northern Residents. In addition, there are Southern Resident females of reproductive age that have not produced viable calves. Both factors are relevant to the future reproductive capacity of the population, although we are currently unable to quantify target values for either parameter to achieve delisting. Generally, an inter-birth interval that is closer to that of the Northern Residents and an increase in the number of reproductive age females that are producing calves, would contribute to a positive growth trend. The presence of post-reproductive females, who may possess important cultural knowledge, is another factor that may be important to the viability of killer whale populations, although we are uncertain how to quantify their contribution or representation. The implications of these and other factors are not well understood, but need to be taken into consideration when evaluating whether there is a balanced population age structure and gender ratio that supports adequate replacement and long-term maintenance of the population. The following criteria should be applied to ensure that the Southern Resident population is not likely to become endangered in the foreseeable future.

2. Available information on social structure, calf recruitment, survival, population age structure, and gender ratios of the Southern Resident DPS are consistent with the trend observed under Criterion 1 above and are indicative of an increasing or stable population.

Quantitative measures for population parameters include:
- Representation from at least three pods,
- At least two reproductive age males in each pod or information that fewer males are sufficient,
- A ratio of juveniles, adults, post-reproductive, male and female individuals similar to the Northern Resident population model [i.e., 47% juveniles, 24% reproductive females, 11% post-reproductive females, and 18% adult males] (Olesiuk et al. 2005), and
- No significant increase in mortality rate for any sex or age class.

Threats Criteria
The threats criteria are designed to evaluate the five listing factors as they relate to the southern resident DPS (see *Potential Threats to Southern Resident Killer Whales*). The same five statutory factors must be considered in delisting as in listing, with objectives related to each factor included as part of the recovery criteria.

Factor A: The present or threatened destruction, modification, or curtailment of a species’ habitat or range.

Objective: Ensure adequate habitat to support a recovered population of Southern Resident killer whales. Habitat needs include sufficient quantity, quality, and accessibility of prey species.

Criteria:
1. Observations indicating that lack of prey is not a source of mortality or a factor limiting recovery of Southern Residents. Consistent observations or measurements of good body condition in a significant number of
individuals, and no or limited observations of reduced feeding behavior or recovery of emaciated stranded animals.

2. Sufficient knowledge of the foraging ecology of Southern Residents to determine that established fishery management regimes are not likely to limit the recovery of the whales.
 a. Fisheries management programs that adequately account for predation by marine mammal populations when determining harvest limits, hatchery practices, and other parameters.
 b. Fisheries management programs consistent with recovery of salmon stocks and supports sustainable salmon populations.

3. Contaminant levels in killer whales, prey species or surrogate marine mammal populations in the greater Puget Sound area that indicate a reduction or slowing of accumulation of legacy contaminants, such as PCBs and DDTs. This could include data showing that overall contaminant levels in the population are decreasing or accumulation is slowing, or information that younger animals have a proportionally reduced contaminant load. A decrease in the number of contaminated sites in Puget Sound would also indicate a reduction in contaminants in a portion of the habitat of Southern Resident killer whales.

4. Management actions in place to reduce vessel disturbance, auditory masking and risk of ship strikes. Voluntary guidelines, education programs and prohibitions under the MMPA are currently in place and regulations and/or protected areas should be evaluated to determine if they will provide additional reduction in vessel effects.

Factor B: Overutilization for commercial, recreational, or educational purposes

Objective: Ensure commercial, recreational or educational activities are not impacting the recovery of Southern Residents, including vessel effects from whale watching.

1. Reduction in impacts from commercial and recreational whale watching, or evidence that this activity does not cause population level effects. Reductions may be measured through fewer incidents reported in the vicinity of whales, increased audiences for education programs and establishment of regulations or protected areas if needed (see Factor A, Criteria 4)

2. No permanent removals of individual Southern Residents from their habitat, including live capture for public display, and no incidental or deliberate mortalities associated with fisheries or other activities.

Factor C: Disease or predation

Objective: Ensure that diseases and their effects on reproduction and survival are not a threat to the sustainability of the Southern Resident DPS.
1. Sufficient knowledge to determine that disease is not limiting the recovery of Southern Resident killer whales.

Factor D: The inadequacy of existing regulatory mechanisms

Objective: Ensure that contaminants and their effects on the Southern Resident DPS are not a threat to the sustainability of the DPS

1. There is monitoring of levels of emerging contaminants, such as PBDEs, in Southern Residents, prey species, and surrogate marine mammal populations in the greater Puget Sound area to evaluate baseline conditions and trends to determine if current contaminant inputs into the Southern Residents’ habitat are limiting recovery.

2. There are regulations to stop introduction of harmful contaminants, and there is evidence of decreasing levels of contaminants detected in Southern Residents, prey species, or surrogate marine mammal populations, or evidence that there is no harm to the whales.

3. There is a reduction in impacts from commercial and recreational whale watching, or evidence that this activity does not cause population level effects. Reductions may be measured through fewer incidents reported in the vicinity of whales, increased audiences for education programs and establishing regulations/protected areas if needed (see Factor A, Criteria 4)

Factor E: Other natural or manmade factors affecting its continued existence.

Objective: Maintain protection from oil spills and improve oil spill response techniques for killer whales. Continue monitoring the population and identify any new natural or manmade factors affecting the recovery of Southern Residents.

1. Effective oil spill response plan wildlife brand section of NWACP with component for killer whales is in place.

2. Effective oil spill prevention plans in place that are no less protective than those in place at time of listing.

3. Continuation of annual census to assess the population status.

4. Effective research program in place to evaluate risks to Southern Resident killer whales.

5. Increase knowledge of distribution, habitat use and potential risks to the population in the coastal portion of its range.
Downlisting

Biological Criteria

Downlisting criteria are an intermediate goal that may be achieved prior to meeting the criteria for delisting. To downlist the Southern Resident DPS from endangered to threatened, NMFS must determine that the species abundance and population parameters, taken together with threats (as identified under the five listing factors considered for listing), no longer render the species “in danger of extinction throughout all or a significant portion of its range.” As a threatened species, however, the Southern Resident DPS would still be considered “likely to become endangered in the foreseeable future throughout all or a significant portion of its range.” In our listing determination we explained that we listed the Southern Residents as endangered rather than threatened:

The peer reviewer and others highlight the ongoing and potentially changing nature of pervasive threats, in particular, disturbance from vessels, the persistence of legacy toxins and the addition of new ones into the whales’ environment, and the potential limits on prey availability (primarily salmon) given uncertain future ocean conditions. The peer reviewer correctly observed that these risks are unlikely to decline (and are likely to increase) in the future. The small number of reproductive age males and high mortality rates for this group are also a concern. And while the population of Southern Residents is not naturally large, the intensity of the threats is increased by the small number of animals currently in the population. The combination of factors responsible for past population declines are unclear, may continue to persist and could worsen before conservation actions are successful, which could potentially preclude a substantial population increase.

To establish appropriate downlisting criteria for the Southern Resident DPS, we used many of the same assumptions and considerations described above for delisting criteria. First, sustained growth at a level the Southern Residents have achieved in the past for a period covering one 14-year cycle of high and low mortality will guard against a steep decline or increased mortality and provide some indication that the Southern Residents are resilient to stochastic events. To be considered for downlisting, the following criterion must be met.

1. The Southern Resident DPS has exhibited an increasing population trend at an average growth rate of 2.3 % per year for 14 years (one cycle).

This criterion could be achieved under a variety of scenarios and depends on when the time period begins. For example, if beginning in 2001, with 81 animals and estimated average growth of 2.3 % over the next 14 years, the population would have about 113 animals in 2015. The Southern Residents came close to achieving this criteria during a 12-year period from 1984-1996, when the population grew at an average of 2.3 % per year.

Second, our confidence in the continued persistence of the Southern Residents depends not just on a demonstrated positive growth rate or an absolute number of animals, but also the presence of an adequate population structure to ensure the population will not fall below a threshold
leading to extinction during inevitable periods of low survival or productivity. Progress toward a stable population structure, as described under Criterion 2 of the delisting criteria, will support the increasing population trend above. The following criterion should be applied to ensure that the Southern Resident DPS is not in danger of extinction:

2. Available information on social structure and population structure are consistent with the trend observed under Criterion 1 above, and they are indicative of an increasing or stable population.

Quantitative measures for some population parameters:
- Representation from at least three pods, and
- At least one reproductive age male in each pod.

Threats Criteria
To be considered for downlisting from endangered to threatened status, we must have some indication that we are making progress toward filling the data gaps on threats to Southern Resident killer whales. Intermediate steps to prioritize and address the threats along with a positive population trend will ensure that the Southern Resident DPS is no longer in danger of extinction. The endangered listing and the proposal to list the Southern Resident DPS as threatened included threats under the five listing factors and concerns about the DPS. The same factors must be considered in determining that the level of threat has been addressed to downlist from endangered to threatened.

1. Improved understanding of the threats connected to previous population declines or that are most important to address in limiting recovery, and
2. Progress toward achieving the delisting threat criteria under each listing factor above, for the most important threats.
V. RECOVERY PROGRAM

Below is an outline of recovery measures, and research and monitoring actions needed to achieve the plan’s goals and objectives. First is a Recovery Action Outline which lists the actions in outline format, followed by a Recovery Action Narrative which includes descriptions of all of the actions. These actions are intended to reduce threats and restore the Southern Resident killer whale population to long-term sustainability. The outline includes management and coordination actions, as well as research and monitoring actions to conserve Southern Resident killer whales. Ongoing programs in place to address killer whale conservation are also listed in the narratives. The narratives are intended to provide guidance to resource managers, stakeholders, industry, and the public. Parties with authority, responsibility, or expressed interest to implement a specific conservation action are identified in the Implementation Schedule. Note that the ranking of activities listed below does not imply an order of importance. The priority of each action, plus a cost and timeline for completion, are in the Implementation Schedule. Actions that will benefit from additional research are cross referenced with the Research and Monitoring section.

A. Recovery Action Outline

MANAGEMENT MEASURES

1. Protect the Southern Resident killer whale population from factors that may be contributing to its decline or reducing its ability to recover.

1.1 Rebuild depleted populations of salmon and other prey to ensure an adequate food base for recovery of the Southern Residents.

1.1.1 Support salmon restoration efforts in the region.

1.1.1.1 Habitat management.

1.1.1.2 Harvest management.

1.1.1.3 Hatchery management.

1.1.2 Support regional restoration efforts for other prey species.

1.1.3 Use NMFS authorities under the ESA and the MSFCMA to protect prey habitat, regulate harvest, and operate hatcheries.

1.2 Minimize pollution and chemical contamination in Southern Resident habitats.

1.2.1 Clean up contaminated sites and sediments.

1.2.1.1 Identify and prioritize specific sites in need of cleanup.

1.2.1.2 RemEDIATE sites in need of cleanup.

1.2.2 Minimize continuing inputs of contaminants into the environment.
1.2.2.1 Minimize the levels of harmful contaminants discharged by industrial, municipal, and other point sources of pollution.

1.2.2.2 Minimize the levels of harmful contaminants released by non-point sources of pollution.

1.2.2.3 Develop environmental monitoring programs for emerging contaminants.

1.2.3 Minimize contamination in prey.

1.3 Minimize disturbance of Southern Resident killer whales from vessels.

1.3.1 Monitor vessel activity around whales.

1.3.1.1 Expand efforts to monitor commercial and recreational whale-watching vessels.

1.3.1.2 Evaluate the relative importance of shipping, ferry, fishing, research, military, and other vessel traffic to disturbance of killer whales.

1.3.2 Continue to evaluate and improve voluntary whale-watching guidelines.

1.3.3 Evaluate the need to establish regulations regarding vessel activity in the vicinity of killer whales.

1.3.4 Evaluate the need to establish areas with restrictions on vessel traffic.

2. Protect Southern Resident killer whales from additional threats that may cause disturbance, injury, or mortality, or impact habitat.

2.1 Minimize the risk of oil spills.

2.1.1 Prevent oil spills.

2.1.2 Prepare for and respond to oil spills to minimize their effects on Southern Resident killer whales.

2.1.3 Develop strategies to deter killer whales from entering spilled oil.

2.2 Monitor and minimize the risk of infectious diseases in Southern Resident whales.

2.3 Continue to use agency coordination and established MMPA mechanisms, such as incidental harassment authorizations, to minimize any potential impacts from human activities involving acoustic sources, including Navy tactical sonar, seismic exploration, in-water construction, and other sources.
2.4 Reduce potential for impacts of invasive species in Southern Resident habitats.

2.4.1 Prevent the introduction and spread of invasive species.

2.4.2 Eradicate existing populations of invasive species.

3. Develop public information and education programs.

3.1 Enhance public awareness of Southern Resident status and threats.

3.1.1 Exhibits and programs at local museums, aquaria, parks, and other locations.

3.1.2 School programs.

3.1.3 Naturalist programs.

3.2 Expand information and education programs to reduce direct vessel interactions with Southern Resident killer whales.

3.2.1 Expand the on-water educational efforts of the Soundwatch Boater Education Program, Marine Mammal Monitoring Project (M3), and enforcement agencies.

3.2.2 Outreach to private boaters.

3.2.3 Encourage land-based viewing of killer whales.

3.3 Educate the public on positive actions that they can take to improve environmental conditions for Southern Resident killer whales.

3.4 Solicit the public’s assistance in finding killer whales.

3.4.1 Solicit reports of killer whale sightings.

3.4.2 Solicit reports of killer whale strandings from the public.

4. Respond to killer whales that are stranded, sick, injured, isolated, pose a threat to the public, or exhibit nuisance behaviors.

4.1 Manage atypical individual Southern Residents.

4.2 Respond to strandings of killer whales.

4.2.1 Develop protocols for responding to stranded killer whales.

4.2.2 Respond to live-stranded killer whales.
4.2.3 Investigate strandings of dead killer whales.

4.3 Respond to future resource conflicts between the Southern Residents and humans.

5. Transboundary and interagency coordination and cooperation.

5.1 Cooperative research and monitoring.

5.1.1 Population monitoring and research.

5.1.2 Stranding response coordination.

5.2 Complementary recovery planning.

5.2.1 Subject plans to periodic review.

5.2.2 Encourage public participation.

5.3 Inter-jurisdictional enforcement cooperation and coordination.

5.4 Funding for recovery.

RESEARCH AND MONITORING
A. Monitor status and trends of the Southern Resident killer whale population.

A.1 Continue the annual population census.

A.2 Maintain a current photo-identification catalog for the Southern Residents and expert staff able to photographically identify the whales.

A.3 Standardize the results of annual population surveys.

B. Conduct research to facilitate and enhance recovery efforts for Southern Resident killer whales.

B.1 Determine the distribution and habitat use of the Southern Residents.

B.1.1 Determine distribution and movements in outer coastal waters.

B.1.2 Improve knowledge of distribution and movements in the Georgia Basin and Puget Sound.

B.2 Investigate the diet of the Southern Residents.

B.2.1 Determine the diet of the Southern Residents.
B.2.2 Determine the importance of specific prey populations to the diet.

B.2.3 Determine the extent of feeding on hatchery fish.

B.3 Analyze the demographics of the Southern Residents.

B.3.1 Determine mortality rates and potential causes of mortality.

B.3.2 Evaluate population growth rates and survival patterns.

B.3.3 Evaluate population structure.

B.3.4 Evaluate changes in social structure.

B.4 Investigate the health and physiology of the Southern Residents.

B.4.1 Assess the health of population members.

B.4.2 Assess individual growth rates.

B.4.3 Determine metabolic rates and energy requirements.

B.5 Investigate the behavior of the Southern Residents.

B.6 Assess threats to the Southern Residents.

B.6.1 Assess the effects of changes in prey populations.

B.6.1.1 Determine historical changes in prey abundance and distribution, and their effects on Southern Resident population dynamics.

B.6.1.2 Assess changes in prey quality and their effects on Southern Resident population dynamics.

B.6.1.3 Determine whether the Southern Residents are limited by critical periods of scarce food resources.

B.6.1.4 Assess threats to prey populations of the Southern Residents.

B.6.2 Assess the effects of human-generated marine sound and vessel traffic.

B.6.2.1 Determine vessel characteristics that affect the Southern Residents.

B.6.2.2 Determine the extent that vessels disturb or harm the Southern Residents.
B.6.2.3 Determine the extent that other sources of sound disturb or harm the Southern Residents.

B.6.2.4 Determine the acoustic environment of the Southern Residents.

B.6.2.5 Determine the hearing capabilities and vocalization behavior of the Southern Residents near sound sources.

B.6.2.6 Assess the effects of human-generated marine noise on Southern Resident prey.

B.6.3 Assess the effects of contaminants.

B.6.3.1 Determine contaminant levels in the Southern Residents and other killer whale communities in the northeastern Pacific.

B.6.3.2 Determine contaminant levels in Southern Resident prey.

B.6.3.3 Determine the sources of contaminants entering Southern Resident prey.

B.6.3.4 Determine the effects of elevated contaminant levels on survival, physiology, and reproduction in the Southern Residents.

B.6.4 Determine risks from other human-related activities.

B.6.5 Evaluate the potential for disease.

B.7 Identify important habitats for the Southern Residents.

B.8 Determine the effects of variable oceanographic conditions on the Southern Residents and their prey.

B.9 Determine genetic relationships.

B.9.1 Determine paternity patterns in the Southern Residents.

B.9.2 Determine the risk of inbreeding.

B.9.3 Determine historical population size.

B.9.4 Determine genetic relationships among populations.

B.9.5 Expand the number of genetic samples available for study.

B.10 Improve research techniques and technology.

B.11 Research support and coordination
B. Recovery Action Narrative
MANAGEMENT MEASURES
1. Protect the Southern Resident killer whale population from factors that may be contributing to its decline or reducing its ability to recover.

Throughout the process to designate the Southern Resident DPS as endangered, NMFS has received information on factors that may be contributing to the population decline. The primary potential risk factors for Southern Residents are prey availability; pollution and related effects; and ambient noise, discrete sounds from individual sources, and stress associated with vessel activities. In 2003 and 2004, NMFS held a series of workshops focusing on these topics to identify management actions to consider in this plan. While some actions can be taken immediately based on current knowledge, others will require considerable research before effective management actions can be developed and implemented (Section V).

1.1 Rebuild depleted populations of salmon and other prey to ensure an adequate food base for recovery of the Southern Residents.

The Southern Residents have experienced significant changes in food availability during the past 150 years because of human impacts on prey species. Widespread reductions in salmon abundance from British Columbia to California during this period have likely had the greatest effects on the whales. Wild salmon have declined primarily due to degradation of aquatic ecosystems resulting from modern land use changes (e.g., agricultural, urban, industrial, and hydropower development, and resource extraction), overharvesting, and hatchery production. Comprehensive reviews of the status of wild salmonid populations in Washington, Oregon, Idaho, and California have resulted in the listing of 26 evolutionarily significant units (ESUs) of Pacific salmon and steelhead as endangered or threatened under the ESA since the 1990s. Additionally, many non-listed populations are depressed and also in need of restoration. There are regional restoration efforts underway for other species (e.g., rockfish, lingcod, herring, Pacific halibut and forage fish) such as the Puget Sound Nearshore Restoration Plan. Additional information regarding the specific interactions between salmon and killer whales (Tasks B.1, B.2) will help identify priorities and provide support for ongoing salmon recovery efforts. A number of non-salmonid prey species (e.g., rockfish, lingcod, herring, Pacific halibut) have also declined and are the targets of regional restoration efforts, such as the Puget Sound Nearshore Ecosystem Restoration Project.

1.1.1 Support salmon restoration efforts in the region.

Because of inadequate information on specific salmon stocks utilized by the Southern Residents, both historically and currently, it is appropriate at this stage to support salmon restoration efforts on a region-wide basis, with preliminary emphasis placed on river basins that are or have the potential to be significant producers of Chinook and other salmonids. Successful salmon recovery programs must be broadly based and address the complex issues of land-use practices, commerce and energy demands, salmon harvest management, and hatchery
management. Recovery efforts for listed ESUs of salmon are already underway or are being planned across the region through numerous programs involving federal, state, provincial, tribal, and local governments and private conservation groups. These efforts will benefit the restoration of many non-listed salmonid populations as well. In Washington State, six major initiatives are taking place, including those by Shared Strategy for Puget Sound, Hood Canal Coordinating Council, Lower Columbia Fish Recovery Board, Yakima Subbasin Fish and Wildlife Planning Board, Upper Columbia Salmon Recovery Board, and Snake River Salmon Recovery Board. Each of these groups has prepared draft recovery plans (e.g., Shared Strategy for Puget Sound 2005) that will drive integrated salmon conservation efforts in the state over the next decade. Various planning efforts are also underway in Oregon, California, and Idaho. Complementing initiatives in the United States, Canadian authorities have recently introduced their Wild Salmon Policy, which summarizes actions needed for restoring salmon populations in British Columbia (Fisheries and Oceans Canada 2004). Expansion of grant programs, especially the Pacific Coastal Salmon Recovery Fund, will aid the implementation of greater numbers of projects. Restoration measures for salmonids will require substantial actions across all categories of limiting factors and threats, as described in the following subtasks. It is vital that meaningful increases in salmon abundance be achieved above and beyond those associated with periods of favorable ocean productivity.

1.1.1.1 Habitat management.

Preservation, restoration, and rehabilitation of degraded freshwater, estuarine, and shoreline habitats is a major emphasis of salmon restoration programs and involves numerous activities, such as reforestation of riparian zones, installment of woody debris in stream channels, removal of fish passage barriers and other structures affecting habitat, land acquisitions, and aquatic/marine protected areas. Other necessary components of habitat improvement programs include expansion of local land-use planning and control (such as shoreline management plans and critical areas ordinances), including management of future growth and development to protect watershed processes; better management of streamflow through water allocation processes; water quality enhancement through prevention of chemical contamination, stormwater management, and other actions; and adequate regulatory mechanisms. It is important that restoration activities not be limited to forested portions of watersheds, and that they also occur in urban and agricultural settings.

1.1.1.2 Harvest management.

Salmon managers at the state, provincial, federal, and tribal levels should work through established planning processes to ensure that harvest goals are compatible with greater levels of natural escapement and other recovery needs of the fish. Restoration of depressed naturally spawning salmon
stocks will benefit from regular review and evaluation of harvest strategies, expanded monitoring of catch and escapement levels via improved count methods, greater targeting of hatchery fish in some fisheries, and use of improved gear to reduce incidental mortality of non-target fish in commercial and sport fisheries. There is also a need to expand the resources necessary for effective enforcement of fishery rules and regulations.

1.1.1.3 Hatchery management.

Reform of hatchery practices can reduce negative genetic and ecological interactions between hatchery and wild salmon (Brannon et al. 2004, Mobrand et al. 2005). Furthermore, hatcheries can directly assist in the restoration of some wild salmon populations (Flagg et al. 2004). A number of reform programs (e.g., the Hatchery Scientific Review Group, which covers Puget Sound and coastal Washington; Blankenship and Daniels 2004) have been established in recent years to review hatchery activities and recommend management measures beneficial to the recovery of wild populations. It is particularly important that breeding, culture, and release practices be designed to reduce the potential effects of domestication, competition, and predation and that effective water quality and disease measures be implemented. Hatchery and Genetic Management Plans (HGMPs), which are required by NMFS, are one tool for addressing the effects of artificial propagation activities on certain listed species and have been prepared for most hatcheries.

1.1.2 Support regional restoration efforts for other prey species.

Southern Resident killer whales feed on a variety of non-salmonid prey, although current information suggests that these species (e.g., rockfish, lingcod, herring, and Pacific halibut) comprise only a small portion of the diet. Nevertheless, it is appropriate to support conservation and recovery measures for such prey species until more is known about their importance to the whales (Task B.2). Management plans exist for some of these species and cover harvest control rules, consideration of marine protected areas, habitat protection, and greater enforcement.

1.1.3 Use NMFS authorities under the ESA and the MSFCMA to protect prey habitat, regulate harvest, and operate hatcheries.

Other measures to manage and recover listed salmon and other fish exist under the ESA and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). Section 7 of the ESA requires federal agencies to ensure, through a consultation process, that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of listed species or result in the destruction or adverse modification of their critical habitat. Critical habitat designations exist for nearly all of the region’s endangered and threatened species of salmon.
Section 10 of the ESA provides for permits and exemptions for otherwise prohibited activities. To issue permits for activities including research, hatchery operations, and harvest programs, NMFS must find that the taking will not appreciably reduce the likelihood of the survival and recovery of the species in the wild. The MSFCMA requires the development of biologically-based Fishery Management Plans (FMPs) that ensure the conservation and recovery of ocean-harvested species, including Pacific salmon, groundfish, and Pacific halibut. FMPs include procedures for identifying, conserving, and enhancing Essential Fish Habitat for such species.

1.2 Minimize pollution and chemical contamination in Southern Resident habitats.

Chemical contamination represents another major threat to Southern Resident killer whales, despite the enactment of modern pollution controls in recent decades, which have been successful in reducing the presence of many contaminants in the environment. Recent studies have documented high concentrations of PCBs, DDTs, and PBDEs in Southern Resident whales. These and many other chemical compounds are of concern because of their ability to induce immune suppression, reproductive impairment, and other physiological damage, as observed in other marine mammals. Contaminants enter marine waters and sediments from numerous sources, but are typically concentrated near areas of high human population and industrialization. Freshwater contamination is also of concern because of its impacts on salmon populations during sensitive life stages. Because of projected human population growth in the region in coming decades, especially in Puget Sound and the Georgia Basin, greater efforts will be needed by governments, industry, and the public to minimize pollution. International coordination with Canadian efforts and broader international initiatives can also contribute to a cleaner environment. The Puget Sound Action Team (PSAT) coordinates and implements Washington State’s environmental agenda for Puget Sound and adjacent waters. Actions to identify and stop pollution in the greater sound area are the primary focus of the 2005-2007 Puget Sound Conservation and Recovery Plan (Puget Sound Action Team 2005b). In late 2005, the Governor of Washington announced formation of a major new initiative known as the Puget Sound Partnership, whose intent is to design a comprehensive strategy for achieving significant progress in protecting and restoring Puget Sound and adjoining waters by 2020 (Puget Sound Partnership 2006). Extensive background on contaminant regulations in British Columbia and needs for cleanup, research, and management in the Georgia Basin appears in Garrett (2004).

1.2.1 Clean up contaminated sites and sediments.

Many contaminated locations have undergone remediation since the 1970s and some are now considered cleaned. Continuation of remediation efforts remains an important priority for protecting the Southern Residents and prey species. The long-range goal of this work is to clean up all sites exceeding recognized government standards for pollution that may be contributing to the contamination of the whales or their prey. Necessary actions are discussed in greater detail in other planning documents (e.g., Puget Sound Water Quality Action Team 2000).
1.2.1.1 Identify and prioritize specific sites in need of cleanup.

Continued assessments are needed to identify and monitor contaminated marine sediments and upland sites in Puget Sound, the Georgia Basin, and other areas occupied by the Southern Residents and their prey. Comprehensive inventories of contaminated sites should be maintained and regularly updated, and should be used to prioritize sites in need of further investigation and remediation. A GIS project to identify and map contaminated sites is currently underway to assist with prioritizing cleanup based on importance for killer whales.

1.2.1.2 RemEDIATE sites in need of cleanup.

Cleanup actions are ongoing at numerous contaminated locations in the region (Washington State Department of Ecology 2005) and should continue until completion. Remediation of sites that have yet to be cleaned will also be needed. In both cases, site-specific cleanup plans require regular re-evaluation, and updating, and may require identification of additional funding sources. Common methods for dealing with contaminated sediments and soils include capping, removing, and treating, but some areas can be left to naturally recover without remediation if the sources of contamination are controlled. Management of sediment disposal should prevent release of toxic chemicals that could be a problem for Southern Residents. Post-cleanup monitoring is also important and must be fulfilled.

1.2.2 Minimize continuing inputs of contaminants into the environment.

Conventional pollution control practices have greatly improved in North America during recent decades, yet much remains to be done in reducing the environmental inputs of a wide diversity of chemical compounds that are potentially harmful to the Southern Residents and their prey. Mitigation activities should be conducted at the local, state, provincial, national, and international levels.

1.2.2.1 Minimize the levels of harmful contaminants discharged by industrial, municipal, and other point sources of pollution.

Industries and municipal sewage treatment plants, commonly referred to as “point sources,” produce vast amounts of wastewater, which can be a significant source of contamination when insufficiently treated or when technology limits the treatment of certain classes of contaminants. Important point sources of contamination in the region should be identified (Task B.6.3.3) and prioritized for action. Necessary activities include adoption of revised water and sediment quality standards based on available information, requiring discharge permits to cover all pollutants of concern, upgrading treatment systems and pretreatment programs, improving permit
compliance through inspections and enforcement, and elimination of unpermitted discharges (Puget Sound Water Quality Action Team 2000).

1.2.2.2 Minimize the levels of harmful contaminants released by non-point sources of pollution.

Non-point source pollution is another primary contributor of contamination in aquatic environments and originates from poor agricultural and forest practices, stormwater runoff, improper disposal of household hazardous wastes, certain recreational boating activities, failing septic systems, improper use of pesticides, and atmospheric deposition. Pollution from some of these sources is considered a major impairment of freshwater and estuarine salmon habitat in the region. Although water quality standards and management plans already exist to reduce pollution from non-point sources, government agencies and the public can do more to meet goals through education, financial and technical assistance, regulation, enforcement, improved watershed planning, and implementation of best practices (Puget Sound Water Quality Action Team 2000, Garrett 2004). Water quality monitoring should continue. International agreements designed to curb certain types of pollutants, especially atmospheric pollutants, should be considered.

1.2.2.3 Develop environmental monitoring programs for emerging contaminants.

Southern Resident killer whales and their prey may be impacted by numerous emerging chemical compounds entering the environment, including brominated flame retardants (BFRs), polychlorinated paraffins (PCPs), perfluorooctane sulfonate and other perfluorinated compounds, polychlorinated naphthalenes (PCNs), polychlorinated terphenyls (PCTs), and endocrine disruptors (e.g., synthetic estrogens, steroids, some pesticides, and personal care products) (Grant and Ross 2002). Monitoring programs for these chemicals should be developed or expanded (Garrett 2004). New regulations pertaining to discharge may also be needed. The U.S. Environmental Protection Agency will be identifying areas within their PBDE Project Plan to assist with recovery of Southern Residents.

1.2.3 Minimize contamination in prey.

Additional research is necessary to identify prey species of Southern Residents and monitor contaminant levels in prey (Tasks B.2 and B.6.1.2.) This information will allow managers to evaluate, if necessary, the most effective methods beyond Tasks 1.2.1 and 1.2.2 in minimizing contamination in prey. In particular, there is a strong need to evaluate the role of current hatchery rearing practices that encourage longer residency periods in Puget Sound by Chinook salmon, resulting in higher contaminant loadings in the fish.
1.3 Minimize disturbance of Southern Resident killer whales from vessels.

Increasing numbers of vessels around the Southern Residents were identified as a potential risk factor in the recent decline of the population, but, the relative importance of this concern is not well understood. Human-generated sound has the potential to mask echolocation and other signals used by the species, as well as to temporarily or permanently damage hearing sensitivity, whereas vessel presence has been implicated in increased energy expenditure for whales. Inhalation of significant amounts of potentially harmful airborne pollutants, such as polycyclic aromatic hydrocarbons (PAHs), emitted by engine exhausts of whale watching vessels is an additional concern. Vessel strikes are rare, but are another potential source of injury or mortality and should be monitored. Land-based viewing sites, voluntary no-boat zones, approach guidelines, and education programs (Task 3.2) have been initiated in recent years to address concerns relating to vessels, but additional management measures, such as encouraging vessel owners to employ quieter designs, may be necessary to reduce vessel effects. Further research on many aspects of vessel impacts (Task B.6.2) is needed to guide future management recommendations.

1.3.5 Monitor vessel activity around whales.

1.3.5.1 Expand efforts to monitor commercial and recreational whale-watching vessels.

Two on-water stewardship programs, Soundwatch and the Marine Mammal Monitoring Project (M3), currently monitor commercial and recreational vessels engaged in whale watching in the vicinity of the San Juan Islands and southernmost British Columbia. In addition to educating boaters about the “Be Whale Wise” guidelines for viewing whales, the programs document levels of boating activity near the whales and monitor vessel compliance with the guidelines. These programs should be expanded to allow daily coverage of primary viewing areas during the main viewing season (i.e., May to October), longer hours of coverage per day, and compilation of more complete whale-watching data. Continuation of current programs and additional efforts will assist in assessing impacts of vessels on whales and evaluating future guidelines, regulations, and protected areas.

1.3.5.2 Evaluate the relative importance of shipping, ferry, fishing, research, military, and other vessel traffic to disturbance of killer whales.

Numerous types of vessels have the potential to negatively affect the behavior of killer whales, but little information is available on this issue. The presence and activity patterns of non-whale-watching vessels in the vicinity of Southern Resident and other killer whales should be monitored and evaluated (Task B.6.2.1) to determine their potential effect.
1.3.6 Continue to evaluate and improve voluntary whale-watching guidelines.

There is a continual need for private boaters to be educated on boating practices in the vicinity of killer whales. The “Be Whale Wise” education campaign is a successful international program and was created with input from government, commercial and private organizations. In addition to the “Be Whale Wise” whale watching guidelines, the Whale Watch Operators Association Northwest has adopted a more comprehensive set of guidelines for use by commercial whale watch vessels. Guidelines should continue to be refined as more is learned about the impacts of vessels on killer whales (Task B.6.2) and research results should be shared to better inform the public and industry about how to view whales without affecting them.

1.3.7 Evaluate the need to establish regulations regarding vessel activity in the vicinity of killer whales.

Regulations have been established for several ESA-listed species of whales in sensitive areas (e.g., humpback whales in Alaska and Hawaii, and northern right whales in the northwest Atlantic) to protect them from vessel impacts. These regulations generally apply to all types of vessels with exceptions for government vessels operating in the course of their duties. Regulations regarding vessel activities, such as speed or approach distance, should be evaluated to augment existing guidelines and increase enforceability to protect Southern Resident killer whales. Regulatory mechanisms should be supported by research (Task B.6.2) to ensure suitability for the whales and coordinated with enforcement to foster effectiveness with the public. Development of any U.S. regulations should be coordinated with Fisheries and Oceans Canada current proposal to amend their existing Marine Mammal Regulations (Task 5.3).

1.3.8 Evaluate the need to establish areas with restrictions on vessel traffic.

There are a variety of options to address vessel activity in sensitive areas for Southern Residents, including fixed seasonal restrictions, restrictions when whales are present, or restrictions for whale watching vessels only. Many commercial operators and private boaters already adhere to the voluntary closure of an area off western San Juan Island that is used preferentially by the whales for feeding, traveling, and resting. Evaluating this site will help to determine if area vessel restrictions are effective and whether additional voluntary or mandatory areas should be established. Criteria for selecting areas should be supported by research on habitat use (Task B.7) and vessel impacts (Task B.6.2).

2. Protect Southern Resident killer whales from additional threats that may cause disturbance, injury, or mortality, or impact habitat.

The following issues were not identified as major risk factors in the recent Southern Resident decline, but, have been identified as potential factors that can be addressed to protect killer
whales. For the most part, these factors are rare and unpredictable and may have variable effects depending on exposure, magnitude of event, and number of animals present. In some instances management measures are already in place to mitigate and reduce the possibility of injury or mortality. Many activities where impacts on protected resources may occur are addressed through incidental harassment authorizations under MMPA or through section 7 consultations under the ESA.

2.1 Minimize the risk of oil spills.

Major oil spills are potentially catastrophic to the Southern Resident population, either through direct mortality or from harmful physiological effects, as shown by the significant declines in two groups of Alaskan killer whales that likely resulted from the Exxon Valdez spill in 1989. Despite many improvements in spill prevention since the late 1980s, much of the region inhabited by the Southern Residents remains at risk from serious spills because of its heavy volume of shipping traffic and its role as a leading petroleum refining center. Chronic small-scale oil pollution originating mainly from routine shipping practices is also of concern because of its cumulative long-term impacts on aquatic food webs.

2.1.1 Prevent oil spills.

There are a number of international, federal, state, provincial, multi-jurisdictional and industry regulatory programs in place to prevent oil spills including International Maritime Organization conventions, the Oil Pollution Act, and other programs for preventing spills (e.g., Pacific States/British Columbia Oil Spill Task Force) which should be fully supported. New spill prevention policies should be developed and implemented, as appropriate or if needs are identified. Recent legislation in Washington has created an Oil Spill Advisory Council to review the adequacy of oil spill prevention, preparedness, and response activities in the state. High priority needs for reducing the risk of marine spills include the continued conversion of shipping fleets to vessels with safer designs, improved salvage and rescue capabilities, continued operating standards at oil handling facilities and aboard vessels, prevention of pipeline spills near marine areas, prevention of waste oil dumping from vessels, and greater enforcement. Permanent funding is needed for the year-round deployment of a rescue tug at Neah Bay, Washington. Continued use of tanker escort tugs should also be required. Steps for reducing the occurrence of smaller spills include improved operating standards aboard vessels, at ports, and at oil handling facilities in compliance with MARPOL, and greater enforcement.

2.1.2 Prepare for and respond to oil spills to minimize their effects on Southern Resident killer whales.

Oil spills should be cleaned up as rapidly as possible to minimize their impacts on the whales. Much better contingency planning, more training, and frequent re-evaluation of response efforts are needed to improve responses to future spills.
Recent reviews of response efforts have identified needs for greater standardization of response procedures, more aggressive initial responses, better interagency coordination, additional cleanup equipment to be stationed throughout the region, procurement of improved spill detection equipment, increased targeting of sensitive habitats during cleanup efforts, and greater reliance on geographic response plans. Potential effects of oil spills on Southern Residents should be incorporated into the Washington Oil Spill Advisory Council reviews.

2.1.4 Develop strategies to deter killer whales from entering spilled oil.

The use of acoustic harassment devices and other deterrent methods (see Petras 2003) should be evaluated as possible techniques for keeping Southern Resident and other killer whales away from spilled oil. If effective methods can be found, deployment strategies for use during spills should be developed and incorporated into oil spill response planning. Appropriate deterrent methods may vary with spill size, location, and other circumstances.

2.2 Monitor and minimize the risk of infectious diseases in Southern Resident whales.

Gaydos et al. (2004) identified a number of virulent diseases that are potentially transmissible to the Southern Resident population, with morbillivirus, brucellosis, and cetacean pox virus being of greatest concern. Evidence of exposure to some of these pathogens has been detected in other marine mammal populations in or near the range of the whales. The Southern Resident community is vulnerable to a serious disease outbreak because of its high degree of sociality, small population size, and seasonal concentration near the San Juan archipelago. High contaminant levels may also contribute by compromising immune function, thereby increasing disease susceptibility. Activities that could be taken to prevent diseases in the population are fairly limited. Efforts to monitor diseases in the whales and sympatric marine mammals should continue (Tasks 4 and B.6.5). This will provide a better understanding of the role of disease in these populations and may alert scientists to outbreaks, perhaps allowing novel control responses to be devised. To minimize the potential for introducing new infectious diseases, complete disease screenings should be conducted on any killer whales translocated into the region prior to their being moved. The Southern Residents are also potentially vulnerable to several largely terrestrial diseases, such as toxoplasmosis and canine distemper virus. Improvements in managing sewage outflows, animal waste, agricultural runoff, and certain land use practices may help prevent the introduction of such pathogens into Southern Resident habitats.

2.3 Continue to use agency coordination and established MMPA mechanisms, such as incidental harassment authorizations, to minimize any potential impacts from human activities involving acoustic sources, including Navy tactical sonar, seismic exploration, in-water construction, and other sources.

The majority of requests for incidental harassment authorizations under the MMPA involve the incidental harassment of marine mammals by acoustic sources. Killer whale
hearing ranges from 1 to 120 kHz (with peak sensitivity from 20 to 50 kHz, Szymanski et al. 1999), which fully covers the bandwidth generally considered as mid-frequency (2 to 10 kHz). Threshold levels at which underwater anthropogenic noise adversely affects behavior and hearing are poorly understood. In other cetaceans, the onset of temporary hearing loss has been estimated to occur at received sound pressure levels of 195dB at 1 sec duration exposures (Schlundt et al. 2000). Avoidance behaviors in a range of species exposed to different sound sources, other than mid-frequency sonar, have been observed at received levels of 140-160dB (Malme et al. 1983, 1984, 1988, Ljungblad et al. 1988, Tyack and Clark 1998). Effects of noise on killer whales depend on sound frequency, exposure level, and duration, as well as distance from the source, geographical features, and the animal’s hearing ability, exposure history, and motivational state. Additional acoustic monitoring and research on the effects of noise exposure are important to evaluate potential impacts from acoustic sources (Tasks B.6.2.2, B.6.2.3, and B.6.2.4).

Committed to protecting marine mammals in Puget Sound, the Navy has and will continue to work closely with NMFS and has already proactively established procedures to minimize any potential harm to marine mammals from sonar use. The Navy avoids training in major marine mammal concentration areas when possible, listens for vocalizing animals with passive sonar before commencing exercises, and suspends or ceases sonar operations when marine mammals are detected to minimize any potential risk of harm. Navy protective measures also include posting highly trained lookouts that are especially adept at spotting and identifying small objects at sea under all conditions. Reports of marine mammal activity are passed on to command personnel to ensure Navy vessels avoid marine mammals. The Navy coordinates with NMFS on necessary authorizations under the MMPA and ESA on many activities where impacts on protected resources may occur as contemplated by the legislation. Continued coordination with NMFS as federal partners will ensure that adequate conservation measures are put in place if future potential impacts are identified.

2.4 Reduce potential for impacts of invasive species in Southern Resident habitats.

Invasive species have the capacity to greatly alter ecosystem functions and food webs, and therefore pose a major threat to many rare or declining native species. Invasive species are not currently known to affect Southern Resident killer whales, but there is significant potential for serious negative interactions from future introductions, especially through impacts on prey. Several hundred non-native species already exist in marine and estuarine areas of the whales’ range (P. Heimowitz, pers. comm.), including at least 95 species in Washington and British Columbia (Meacham 2001). Further introductions are inevitable, but greater vigilance and preventive management actions can reduce their incidence.

2.4.1 Prevent the introduction and spread of invasive species.

It is far more practical to prevent new introductions of non-native species than to undertake control efforts after invasive populations are detected. Non-native marine and estuarine species are commonly introduced or spread through the
discharge of ballast water in ships, hull and anchor fouling, boater activity, occurrence in shipments of shellfish and fish, and other pathways (Wonham and Carlton 2005). Many federal, state, and provincial regulations and programs are already in place to limit invasives, but should be revised or expanded, as needed. Many suggested management activities pertaining to aquatic invasive species in Washington and Oregon appear in Meacham (2001) and Hanson and Sytsma (2001). Continued monitoring for escaped Atlantic salmon and their wild progeny in the region is an important priority, but detection programs for other species are also needed (Cohen 2004). The Western Regional Panel on Aquatic Nuisance Species can be used to coordinate activities among jurisdictions.

2.4.2 Eradicate existing populations of invasive species.

Few tools or strategies are available for the management and control of invasive species in unconfined marine and estuarine habitats, which makes eradication nearly impossible for many species. Nevertheless, such programs may be practical for some species and should be attempted when favorable circumstances exist. Control efforts for marine invasives are usually costly and manpower intensive.

3. Develop public information and education programs.

Public attitudes are a major part of the success or failure of conservation efforts for most endangered species, especially those occurring near major population centers. Killer whales already enjoy widespread popularity among much of the public living in coastal regions of western North America, but much remains to be done to publicize the plight of the Southern Resident population and to discourage potentially harmful human activities.

3.1 Enhance public awareness of Southern Resident status and threats.

A number of tools and outlets are available to educate the public about the Southern Residents and their conservation. Each of the threats to the population will require an education and outreach component in order to improve the situation through changing people’s behavior, expressing political will, and gathering community support for management initiatives. Government agencies can partner with a variety of existing private organizations to provide information to the public. Private conservation groups interested in conservation of the whales can assist by including appropriate information in their publications and news releases.

3.1.1 Exhibits and programs at local museums, aquaria, parks, and other locations.

The Whale Museum, Seattle Aquarium, Vancouver Aquarium Marine Science Center, Lime Kiln Point State Park, and Lighthouse Marine Park (at Point Roberts, Washington) have exhibits and other programs devoted to increasing public awareness about the biology, behavior, and conservation status of Southern Resident killer whales, as well as knowledge about marine ecosystems. In addition
local non-profit groups have developed programs, such as the monthly lecture series offered by the Puget Sound Chapter of the American Cetacean Society, to increase awareness about whales and conservation issues. Such displays and activities reach both local and visiting audiences and raise basic level of knowledge regarding the ecosystem and killer whales. Placement of exhibits on ferries and along appropriate roadside locations through the Washington Scenic Byways program should be considered. New exhibits or and expansion of current programs will enhance capabilities to reach new and larger audiences.

3.1.2 School programs.

Several education programs targeting at teachers and students already exist. Programs such as these should be greatly expanded to reach additional classrooms and school systems.

3.1.3 Naturalist programs.

Some of the most receptive audiences to learning about killer whales are people participating in marine wildlife viewing activities. Many whale watching companies already employ a naturalist on their cruises to provide guests with background information on killer whales and other aspects of the marine environment. Staff and visiting experts at Lime Kiln Point State Park also give summer interpretive talks on the whales at a land-based viewing site. Continuation of naturalist training programs, such as the ones offered by The Whale Museum and the Marine Mammal Research Group in Victoria, or establishing naturalist certification, would ensure that consistent and accurate messages are relayed not just to whale watchers but to other members of the public.

3.2 Expand information and education programs to reduce direct vessel interactions with Southern Resident killer whales.

Concerns that whale-watching vessels may disturb the Southern Residents have spawned several successful education programs aimed at reducing interactions between boaters and whales. Viewing guidelines for vessels were first developed in the 1970s and have gradually evolved into the current “Be Whale Wise” campaign, which is a transboundary program created through the cooperative efforts of the whale-watching industry, whale advocacy groups, and government agencies. The campaign has been promoted through on-water stewardship programs, brochures, advertisements, and enforcement agents to a variety of audiences including private boaters, fishers, and the general public.

3.2.1 Expand the on-water educational efforts of the Soundwatch Boater Education Program, Marine Mammal Monitoring Project (M3), and enforcement agencies.

Maintaining on-water stewardship programs to educate vessel operators engaged in whale watching or boating in the vicinity of whales is essential for providing information on viewing guidelines and minimizing vessel impacts on Southern
Resident killer whales (Task 1.3.1.1). Such programs should be expanded to allow daily coverage of primary viewing areas during the main viewing season (i.e., May to October) and longer hours of coverage per day. NMFS, WDFW, and DFO enforcement agents have also provided some on-water guidance to vessel operators since 2003 and should expand this activity in cooperation with stewardship programs.

3.2.2 Outreach to private boaters.

On-water stewardship programs (Task 3.2.1) cannot reach every boater. “Be Whale Wise” guidelines and other responsible wildlife viewing messages can be disseminated to private boaters and the general public through the distribution or posting of brochures, billboards, advertisements, and other information sources in coastal communities, marinas, and fishing and boating literature, at boating shows, boat dealers, and bareboat charters, during boating safety training courses, and in conjunction with vessel registration or licensing.

3.2.3 Encourage land-based viewing of killer whales.

Land-based viewing of killer whales should be advocated as a way for the public to see and enjoy the animals without the impacts of boat viewing. Groups such as The Whale Museum, Orca Relief, Lifeforce, and the Puget Sound Chapter of the American Cetacean Society have developed materials to promote land-based whale watching. Suitable on-land viewing sites should be identified (e.g., see Anonymous 2005), promoted, and improved with interpretative facilities and signs. Naturalist programs at land-based viewing sites would also provide valuable information to whale watchers (Task 3.1.3).

3.3 Educate the public on positive actions that they can take to improve environmental conditions for Southern Resident killer whales.

Many private organizations promote environmentally responsible behavior to improve the condition of marine ecosystems within the Southern Residents’ range. Groups focused on the preservation of Puget Sound and the Georgia Basin may be particularly effective with campaigns on contaminant presence and cleanup efforts. Salmon recovery advocates can also assist in reaching the public with salmon concerns and their implications for killer whales. Existing programs range from campaigns encouraging communities and individuals to use environmentally safe lawn products and to safely dispose of hazardous waste to hands-on habitat restoration activities. Local government entities can also play a role, for example, the San Juan County Board of County Commissioners and the San Juan Marine Resources Committee have recognized a county wide stewardship area (Kennedy and Masters 2005) and have outreach campaigns to encourage public support conservation of marine resources, including whales and salmon. Ongoing and new education efforts will build additional community-based support for killer whales, their prey, and habitats.
3.4 Solicit the public’s assistance in finding killer whales.

3.4.1 Solicit reports of killer whale sightings.

Several sighting programs have been established along the west coast of North America to track killer whale and other marine mammal movements. The Orca Network Sightings Network receives reports of killer whales from the public via telephone (1-866-ORCANET) and email (info@orcanetwork.org) and posts them on a web site. The Whale Museum and BC Cetacean Sightings Network also gather local sighting information and additional efforts are underway to collect information outside Puget Sound and during winter months. Despite ongoing programs, much remains unknown about Southern Resident distribution, particularly during the winter and along the outer coast (Task B.1). Additional outreach should be directed at recreational boaters, fishers, vessel crews, and a variety of other groups to obtain sighting information that will assist in filling critical data gaps.

3.4.2 Solicit reports of killer whale strandings from the public.

The public should be continually requested to contact regional stranding networks whenever beached killer whales are encountered. Staffed by government biologists with help from volunteers, network phones are monitored daily, including weekends and holidays. Prompt notification is necessary to facilitate rapid rescue of live animals or to investigate dead whales as soon as possible to obtain information about disease, contaminants, and cause of death (Task 4).

4. Respond to killer whales that are stranded, sick, injured, isolated, pose a threat to the public, or exhibit nuisance behaviors.

4.1 Manage atypical individual Southern Residents.

Marine mammal managers in Washington and British Columbia have twice dealt with young resident calves separated from their pods in the past few years (i.e., L98, “Luna”, a Southern Resident, from 2003-2005; and A73, “Springer”, a Northern Resident, in 2002). It is conceivable that other situations may occur involving solitary Southern Residents that are out of their normal range, separated from their pod, sick, injured, or interacting negatively with humans. The need for intervention by resource agencies in such situations should be evaluated on a case-by-case basis, based on health of the animal, levels of interactions with people, potential threats, distance separated from other pod members, and other appropriate factors. Transboundary consultations, cooperation, and coordination will be needed, as well as community support.

4.2 Respond to strandings of killer whales.

Killer whale strandings are relatively rare in the northeastern Pacific and normally involve single animals. Strandings generate intense scientific and public interest.
Successful responses to strandings must address both interests in a timely and consistent manner. Improved reporting of stranded whales by educating the public (Task 3.4.2) and other monitoring efforts are crucial to enabling response. All strandings occurring from central California to northern British Columbia should be responded to because of the possibility that Southern Resident whales may be involved. In addition, any killer whale stranding (resident, transient, or offshore) provides a rare opportunity to obtain samples and measurements that will increase knowledge of killer whale physiology. Marine mammal stranding investigations in Washington and Oregon are conducted by the Northwest Marine Mammal Stranding Network (NMMSN), which includes resource agencies, local officials, veterinarians, biologists, and volunteer individuals and organizations. Strandings in British Columbia are handled through the Vancouver Aquarium Marine Science Center.

4.2.1 Develop protocols for responding to stranded killer whales.

The NMMSN currently has the capability to respond to stranded killer whales, but advanced planning is crucial to improve rapid and efficient responses to strandings. Response protocols for strandings of live, dead, or entangled whales should be prepared by a working group of resource agencies, members of the NMMSN, cooperating scientists, and education specialists. Protocols should include information on response team personnel, caching and mobilization of equipment, identification of necropsy facilities and testing labs, triage decision making, animal identification, contact lists for geographical areas, communications policies, and disposal practices. Response efforts should be capable of reaching and functioning in remote locations, and should have the capacity to handle multiple animals, given the history of mass strandings in British Columbia during the 1940s. Transboundary coordination is desirable in these efforts (Task 5.1.2).

4.2.2 Respond to live-stranded killer whales.

Live-stranded animals require immediate rescue actions and provide unique opportunities to learn more about the threats facing killer whales. Responses to strandings of live animals should follow the protocols developed under Task 4.2.1 as quickly and safely as possible for responders and the stranded whale. Policies on the collection of samples, hearing testing, and attachment of research tags to released animals are needed.

4.2.3 Investigate strandings of dead killer whales.

The carcasses of all stranded killer whales found in the range of the Southern Residents should be examined and fully necropsied to obtain valuable information on identity, physical condition, disease status, cause of death, contaminant loads, genetic relationships, physiology, and diet. Responses to strandings of dead animals should follow the protocols developed under Task 4.2.1. Necropsies should follow the standard protocol developed by Raverty and Gaydos (2004).
4.3 Respond to future resource conflicts between the Southern Residents and humans.

Interactions between fisheries and resident killer whales have been reported in Alaska. In the event that a Southern Resident-fishery conflict arises, co-managers should take cooperative proactive steps to reduce the conflict. The NMMSN is in place, including members with expertise and equipment, to address immediate needs of individual whales. Management strategies consistent with the MMPA and ESA, and with consideration of public concerns, should be developed and evaluated to resolve such conflicts.

5. Transboundary and interagency coordination and cooperation.

Southern Resident killer whales are listed as endangered under the ESA. Washington State’s killer whales were added to the state’s list of endangered species in 2004, and in Canada, the southern and Northern Residents are listed as endangered and threatened, respectively, under the Species at Risk Act. These designations carry with them an added responsibility for resource agencies to prepare plans or strategies to recover these populations to a healthy condition. The definitions and mandates imposed by each listing are specific to the laws or regulations under which each of the listings are made. Nevertheless, the overarching goals of conservation and population recovery are remarkably similar regardless of jurisdiction. It is recommended that recovery plans and research efforts be coordinated within and among responsible federal, state or provincial agencies to ensure that conservation goals are met and that resources for conservation are optimized.

5.2 Cooperative research and monitoring.

To the extent practicable, research into the biology and conservation concerns of the region’s killer whale populations should be coordinated among resource agencies, especially in the transboundary area. Interagency cooperation should be encouraged as much as possible through collaborative research planning, complimentary study design, cost or resource sharing, and liberal data dissemination practices. While cooperation and sharing of information is important, professional courtesy and ethical data utilization policies must be maintained to preserve the integrity of the intellectual property of the agencies and individuals participating in the research efforts.

5.2.1 Population monitoring and research.

To the extent practicable, killer whale photo-identification, censuses, population demographic studies, and other investigations should be conducted using compatible methodology to allow for consistency and comparison within and among populations, especially in the transboundary area.

5.2.2 Stranding response coordination.

To the extent practicable, killer whale stranding investigations should be coordinated to encourage interagency and international participation and data sharing, especially in the transboundary area (Task 4.2).
5.2 Complementary recovery planning.

It should be a goal of resource agencies involved in conservation or recovery planning for Southern Resident whales to communicate and coordinate during the planning process. Recovery plans and recovery strategies, action plans, and site-specific management measures should be complementary to the extent practicable given the nuances and mandates of the legislation under which each plan is prepared.

5.2.1 Subject plans to periodic review.

Recovery plans should be responsive to the current scientific understanding of the factors affecting the decline or recovery of the Southern Resident population. To remain useful as a tool for improving the current condition, plans should be subject to periodic review and amendment, and incorporate the findings of ongoing research studies as understanding of the factors affecting decline or recovery improves.

5.2.2 Encourage public participation.

The public shall be encouraged to participate in Southern Resident conservation efforts. Resource agencies should communicate the progress, successes, and failures of implementing recommended management actions contained in recovery plans.

5.3 Inter-jurisdictional enforcement cooperation and coordination.

To the extent practicable, federal, state, and local law enforcement and legal authorities in the U.S. and Canada should cooperate and encourage the development and implementation of consistent enforcement and prosecution policies, especially in the transboundary area. Where possible, legal impediments to inter-jurisdictional enforcement actions should be streamlined or removed to encourage enforcement efficiency and transparency for the public. A comprehensive legal review of the applicable sections of the laws and regulations in the U.S. (MMPA, ESA, Washington Administrative Code) and Canada (Fisheries Act, SARA, Provincial Code) should be undertaken to illuminate the similarities and differences between the various laws and regulations. Based on the review, recommendations should be developed for administrative changes to promote consistent interpretation of protective regulations and foster efficient enforcement and prosecution of violations against Southern Residents and other killer whales. Enforcement and prosecution standards should be transparent and easily understood by the public and based on sound wildlife management principles, recognizing the limitations of science in substantiating clear cause-and-effect relationships between action and reaction in the marine environment.
5.4 Funding for recovery.

Funding for research and conservation measures to benefit the recovery of the Southern Resident population was secured by the Washington State congressional delegation during fiscal years 2003, 2004, 2005, and 2006. Nevertheless, this recovery plan contains recommended management actions that are inter-departmental, inter-jurisdictional, and international in nature. Long-term funding for management initiatives to implement the recommended actions is needed and should be planned for in agency budgets as appropriations allow. The public should be encouraged to promote recovery plan implementation through their elected representatives at the federal, state, provincial, and local levels.
RESEARCH AND MONITORING

Research is necessary to better understand the effects of potential risk factors that have been linked to periods of decline in the Southern Residents. Study results will be an important resource for developing science-based management actions to address the threats. Many research tasks should involve repeated sampling efforts to monitor future trends and to assess the effectiveness of management actions. Monitoring is necessary to track the status of the population and the effectiveness of the conservation measures. Note that the ranking of activities listed below does not imply an order of importance. The priority of each action, plus a cost and timeline for completion, appear in the Implementation Schedule. Research and monitoring will support an adaptive management approach, as new information is obtained, priorities can be adjusted. The NWFSC held a “Symposium on Southern Resident Killer Whales” in April 2006 to bring researchers together to present recent study results. The proceedings from the conference and a Draft Southern Resident Killer Whale Research Plan are posted on the NWFSC web page (http://www.nwfsc.noaa.gov/research/divisions/cbd/marine_mammal/marinemammal.cfm).

A. Monitor status and trends of the Southern Resident killer whale population.

A.1 Continue the annual population census.

Annual photo-identification surveys remain one of the most important activities involving Southern Resident killer whales. Counts are performed by the Center for Whale Research and provide a complete yearly inventory of the population dating back to 1974. Counts are conducted by boat primarily in and around the San Juan Islands during June and July, with supplementary information gathered whenever the whales can be observed during the remainder of the year. The surveys yield vital information on annual population changes and demographic parameters, such as sexual composition, age class structure, longevity, birth and survival rates, and reproductive performance of individual females. These data are crucial to determining population trends, analyzing threats, and studying population viability.

A.2 Maintain a current photo-identification catalog for the Southern Residents and expert staff able to photographically identify the whales.

The photo-identification catalog for the Southern Residents is an integral part of identifying individual whales during annual censuses and other encounters throughout the year, and should be maintained as a long-term resource. The Center for Whale Research has managed the catalog since 1976. It is equally important to keep at least one expert skilled in photographic identification of individual whales on the staff of the organization or agency holding the catalog.

A.3 Standardize the results of annual population surveys.

Small discrepancies exist in the annual count results used by different agencies and organizations. The results should be reviewed and standardized dating back to the
1970s to eliminate minor confusion among users. Refinement of data on births and deaths will improve population modeling and demographic analyses.

B. Conduct research to facilitate and enhance recovery efforts for Southern Resident killer whales.

Long-term studies of the Southern Residents have gathered unprecedented data on the individual whales in this small population. However, many important gaps in our understanding of these whales remain, and substantially more research is required to address critical questions about the biology and conservation of the population. Killer whales are inherently difficult to study for a variety of reasons, including their marine habits, large body size, intricate social structure, large geographic ranges, and long life span. In 2003, 2004, 2005, and 2006 funding was made available to expand the research and conservation of Southern Resident killer whales. Studies are needed to address some of the complex cause-and-effect relationships to determine the relative impacts of various extrinsic and intrinsic factors on Southern Resident whales. This research will necessarily require the application of new techniques, the use of more sophisticated and costly technology, the collection of larger sample sizes, and for some, the use of moderately invasive methods (e.g., tissue sampling, telemetry). Long-term commitments of funding and support will be needed to sustain much of this work. Intergovernmental coordination is desirable in these efforts (Task 5.1).

Outlined below are 11 of the most critical research tasks, with subtasks, that need to be addressed by future investigations of the Southern Resident population. For many of these tasks, studies should ideally be designed to identify both similarities and differences among the three commonly recognized Southern Resident pods: J, K, and L. Recent data have highlighted some interesting pod-specific demographic and distribution patterns, and future studies should be designed to identify factors that may be causing disproportionate changes in some pods. When appropriate, research results should be compared to similar data from other North Pacific killer whale populations, especially the Northern Residents and southern Alaskan residents, to gain a broader perspective on biological issues and risks to the Southern Residents. Studies of captive killer whales and other marine mammal species may also be useful, particularly on health-related issues, contaminants, and the development of techniques. For a number of topics, examination of archived data is recommended to compare past and present conditions.

B.1 Determine the distribution and habitat use of the Southern Residents.

The population inhabits an extensive geographic range that is currently known to extend from northern British Columbia to central California. Movements are relatively well known during the warmer months of the year when the whales regularly occupy the protected inland waters of Washington and southern British Columbia, but are very poorly understood when the animals visit the outer coast.

B.1.1 Determine distribution and movements in outer coastal waters.
One of the highest research priorities is to document the population’s use of offshore areas, where only 34 sightings have been verified over a 33-year period. Considerable time is spent in this portion of the range, especially during the winter and early spring, with ranging patterns varying among pods. Information is needed on areas of regular occurrence, movement patterns, distances traveled offshore, habitat selection, and relationships with spatial/temporal occurrence of prey.

B.1.2 Improve knowledge of distribution and movements in the Georgia Basin and Puget Sound.

Much remains to be learned about distribution and movements in inland waters, especially for individual pods and matrilines. Such information will be useful for identifying interpod differences in range, diet, habitat use, and threats; changes in range use over time; and areas worthy of special protection.

B.2 Investigate the diet of the Southern Residents.

Many aspects of diet are poorly known for the population and require study. Such information will shed light on many vital issues, including potential contaminant sources and whether prey abundance is sufficient to support the population. Whenever possible, pod-specific and matriline-specific diet preferences should be identified.

B.2.1 Determine the diet of the Southern Residents.

Another urgent priority is to identify the year-round food habits of the Southern Residents in all parts of their range. Salmonids, especially Chinook, are generally thought to be important prey. However, prey selection likely varies both in time and space. Therefore additional dietary information is needed to confirm the relative importance of Chinook and to identify the contributions of other prey, including other salmon species, groundfish, herring, and squid. Information on preferred prey size, annual variation in diet, and prey selection by age and sex class of whale in relation to species availability is also of interest.

B.2.2 Determine the importance of specific prey populations to the diet.

Seasonal salmonid runs from particular river systems likely play a large role in the diet and distribution of the Southern Residents, but researchers have thus far failed to correlate whale occurrence with the presence and availability of any specific prey population. Identifying prey populations of special significance to the whales is needed (Task 2.1).

B.2.3 Determine the extent of feeding on hatchery fish.

Hatchery fish comprise a large portion of salmonid populations in much of the range of the Southern Residents, but few data exist on their importance to their
diet. This should be established because the characteristics (e.g., energy content and contaminant loads) of hatchery salmon may differ somewhat from those of wild salmon. This information may also help evaluate whether future changes in hatchery management and production levels will impact the whales.

B.3 Analyze the demographics of the Southern Residents.

The population history and maternal genealogy of the Southern Residents are completely known for individual whales born after 1974. Existing studies of these data (Olesiuk et al. 1990a, 2005, Krahn et al. 2002, 2004a) have been quite useful in describing the dynamics of the population, but efforts should be expanded to provide more comprehensive analyses. This information will provide greater insight into the processes affecting the Southern Resident population, especially during periods of decline, and will improve the accuracy of future population viability analyses. Demographic comparisons should be made among pods and with other resident populations.

B.3.1 Determine mortality rates and potential causes of mortality.

Mortality rates are one of the most important factors affecting population changes in killer whales. Comprehensive studies of mortality patterns and associated influences are therefore needed for the Southern Residents. Two high priority tasks are to determine the reasons behind the alternating 7-year periods of higher and lower mortality in the population, and L pod’s disproportionately higher death rate since the mid-1990s.

Definitive causes of death have not been established for any of the more than 80 Southern Residents that have died since 1974. This is largely due to the lack of carcasses for necropsy and difficulties in distinguishing direct causes of death (e.g., starvation and disease) from indirect factors impacting health (e.g., contaminant burdens, food limitations, and vessel interactions). Although few killer whales strand, necropsies to determine causes of mortality for all age and sex classes should be conducted on all available carcasses (Task 4.2.3).

B.3.2 Evaluate population growth rates and survival patterns.

Reproductive patterns also affect population trends and should be described in detail for the Southern Residents. Major influences on birth rates and reproductive trends should also be investigated. Areas of particular interest include the reasons for 1) the population’s cyclic periods of higher and lower birth rates, 2) its longer mean interval between births of viable calves, as compared to other resident populations, 3) L pod’s poor reproductive success during the 1990s, and 4) temporal trends of sex-bias in the production of calves. In addition, identification of factors causing poor reproductive success in females is important. Increased monitoring of the population during the winter and spring
will allow researchers to better determine true birth rates. Determination of paternal genealogy is also needed (Task B.9.1).

B.3.3 Evaluate population structure.

More detailed analyses of age and sex structure patterns over time in the Southern Resident population are needed to assess threats, determine effects on population stability, and predict future growth. Potential constraints on population growth, such as a limited number of reproductive age males, should be evaluated.

B.3.4 Evaluate changes in social structure.

Highly stable matrilines are a major feature of Southern Resident biology. Detailed assessments of social structure dynamics (e.g., intrapod structure or associations) should be made to search for evidence of potential stresses on the population and to examine effects on population stability. Evaluation of changes in intrapod structure on survival and fecundity, and the impacts of reduced population size on social structure are also needed. One particular topic deserving study is the consequences of the losses of key individuals from the population, particularly matriarchal and post-reproductive females, which could result in reduced alloparenting and loss of long-term cultural knowledge, thereby lowering population fitness.

B.4 Investigate the health and physiology of the Southern Residents.

Knowledge of individual health and physiology of the species is beneficial in evaluating a population’s status, dynamics (e.g., survival and fecundity), and threats. Both topics require much additional study for the Southern Residents.

B.4.1 Assess the health of population members.

Hormone levels, blubber depth, respiratory conditions, reproductive status, and other aspects of physical condition should be assessed in sufficient numbers of individual whales representing particular age and sex classes to appraise the population’s health. Evaluations should be done through the application of proven tissue sampling methodologies, or the application of emerging health-monitoring techniques (e.g., collection of respiratory gases, blowhole residues, and fecal samples; use of ultrasound) that do not require the physical restraint or capture of animals.

B.4.2 Assess individual growth rates.

Growth rate comparisons among different cohorts of calves may offer another way of evaluating the effects of changing environmental conditions on the Southern Residents. This work will require the development of suitable morphometric indices. Dorsal fin measurements, which are obtainable from
B.4.3 Determine metabolic rates and energy requirements.

Earlier studies of captive killer whales have provided limited data on the species’ energy demands, but may not accurately reflect the needs of the Southern Residents. More comprehensive metabolic and energetic studies should be conducted on captive killer whales using modern techniques. Knowledge of year-round metabolic rates and caloric requirements of different age and sex groups will help determine whether critical periods of the year exist when prey levels are inadequate. Physiological indicators of nutritional stress should also be developed.

B.5 Investigate the behavior of the Southern Residents.

Comparisons of behavioral data are potentially valuable for evaluating changes in activity patterns over time that may indicate stresses on the population. Information on numerous behaviors (e.g., foraging, socializing, traveling, resting, diving, vocalizations, responses to vessels, and habitat selection) should be collected year-round and analyzed at the individual and group levels, and when possible compared with past data. Consistency and coordination of behavioral data collected by different researchers will assist with comparisons. Other needs include further clarification of the contexts of different behaviors and determination of nighttime activity patterns.

B.6 Assess threats to the Southern Residents.

Southern Resident whales face a number of threats, with reduced prey abundance, elevated contaminant burdens, excessive marine ambient sound and vessel interactions, lack of knowledge about risk factors outside of the Georgia Basin and Puget Sound and elevated contaminant burdens usually cited as the most serious conservation concerns (Task 1). Additional research is needed to characterize these problems and their effects on the population, and to identify other possible extrinsic factors affecting it. One goal of this work should be to determine whether synergistic effects are occurring, whereby multiple factors act in combination to harm the whales. Whenever possible, research activities should assess threats at the level of the pod or matriline to examine differences in exposure to the identified threat factors.

B.6.1 Assess the effects of changes in prey populations.

Human activities have profoundly altered populations of salmon and other Southern Resident prey during the past 150 years. The role that changes in prey
abundance, availability, and quality have played in past declines of the Southern Residents or are currently limiting population growth requires further study.

B.6.1.1 Determine historical changes in prey abundance and distribution, and their effects on Southern Resident population dynamics.

Collection of data and comprehensive assessments of past and present prey abundance and availability are needed throughout the Southern Resident’s range at both regional and watershed scales. These data should be used to understand the role that changes in prey populations may have had on the Southern Residents’ population dynamics. In particular, Ford et al. (2005b) suggestion of a direct relationship between Chinook abundance and whale mortality needs fuller evaluation for the Southern Residents. With improved information on dietary preferences, efforts can be focused on current favored prey species, but a broad perspective is also desirable to consider other prey that may have been formerly important to the whales.

B.6.1.2 Assess changes in prey quality and their effects on Southern Resident population dynamics.

Better data are needed on body condition traits (e.g., size; age; caloric, fat, and nutrient content; and contaminant burdens) of important prey. Such information should be gathered for a variety of prey subcategories, including different populations and age groups within a species, and wild versus hatchery fish. When possible, these studies should make inferences on changes in body condition between past and present prey populations. This information should be used to consider potential impacts on Southern Resident health and population dynamics.

B.6.1.3 Determine whether the Southern Residents are limited by critical periods of scarce food resources.

Information on the Southern Residents’ distribution, movements, diet, foraging behavior, and physiology and changes in prey abundance, availability, and quality should be collected and analyzed to determine whether the Southern Residents face critical periods when food resources limit the population, either annually or more infrequently.

B.6.1.4 Assess threats to prey populations of the Southern Residents.

Research should continue on a variety of known threats affecting populations of salmon and other prey species, including loss and alteration of spawning and rearing habitat, overharvest, pollution, food limitations, and hatchery impacts. The role of salmon aquaculture in transmitting sea lice to free-ranging salmon needs further evaluation, as do threats posed
by invasive species, such as Atlantic salmon, cordgrass, and invertebrates that may disrupt food chains for salmon. The potential for diseases to cause significant changes in prey populations should also be monitored.

B.6.2 Assess the effects of human-generated marine sound and vessel traffic.

The Southern Residents are exposed to increasing levels of marine sound and vessel traffic over much of their range, and in inland waters, high levels of commercial and recreational whale watching. Excessive noise from vessels and other anthropogenic sources may interfere with the whales’ communication, foraging, and navigation, may increase daily energetic costs, and may produce physiological trauma. Vessel presence is also potentially problematic under some circumstances and may inhibit important behaviors. There is an urgent need for greater study of the impacts of marine noise and vessel interactions. Research on Northern Resident whales may be helpful in testing some hypotheses, but not all findings can be extrapolated to the Southern Residents.

B.6.2.1 Determine vessel characteristics that affect the Southern Residents.

Research is needed to evaluate which vessel traits (e.g., vessel type and activity; sound-pressure and sound-exposure levels; distance, size, speed and direction of travel; duration of interaction; and density and number of vessels present) may cause changes in the killer whales’ behavior. Studies should focus both on commercial and private whale-watching craft, as well as commercial fishing vessels, ferries, and other vessel types encountered by these whales either for prolonged periods or in high numbers. Investigations should attempt to determine whether problems caused by vessels are largely acoustic or non-acoustic in nature. Numerous study methods can be employed, but the use of controlled experiments, and land- and boat-based observations and acoustic techniques are particularly appropriate.

B.6.2.2 Determine the extent that vessels disturb or harm the Southern Residents.

Studies should resolve whether interference from whale-watching craft and other vessels causes significant behavioral changes or physical injuries among the whales, and if so, whether these effects are serious enough to reduce survival or reproduction in the population. Threshold levels at which impacts occur should also be established (Task 3.3). Data on vessel numbers and activity should be compiled for the entire distribution of the Southern Residents. The Whale Museum and Soundwatch have gathered whale-watching statistics for the Georgia Basin and Puget Sound since the 1980s, including the size of the commercial fleet, the amount of viewing activity by commercial and private craft, and infractions of whale-watching guidelines. These efforts should be
continued so that future trends in viewing pressure can be evaluated and perhaps correlated with changes in the Southern Resident population.

Assessments of impacts on foraging efficiency and energy acquisition, and whether energy expenditures increase in the presence of vessels are particularly needed. Changes in habitat use patterns and other necessary behaviors such as resting, socializing, and parental care also require evaluation. Additional topics to be addressed are whether cumulative effects on behavior appear over time (e.g., during the course of the whale-watching season) and whether the Southern Residents display any habituation to vessel presence.

B.6.2.3 Determine the extent that other sources of sound disturb or harm the Southern Residents.

The Southern Residents are exposed to numerous other sources of marine sound, such as military and non-military sonar, seismic testing, and marine construction. The impacts of these sounds on the behavior and health of the whales should be assessed. The effects of non-marine sound from land and aerial sources also need investigation.

B.6.2.4 Determine the acoustic environment of the Southern Residents.

Little information exists on the types and levels of marine sound to which these killer whales are exposed. Inventories of acoustic conditions are needed throughout the range of the Southern Residents, but especially in areas of high vessel traffic, such as the San Juan Islands. Studies of sound production by vessels and ambient sound conditions are the highest priority, but other acoustic sources should also be described. Historical trends in ambient noise levels should be estimated as well. An additional need is to examine the characteristics of sound propagation in the areas used by whales.

B.6.2.5 Determine the hearing capabilities and vocalization behavior of the Southern Residents near sound sources.

Sound from vessels and other sources may impair the hearing abilities of killer whales, thereby masking important signals associated with communication, foraging, and navigation. Better information is required on the critical distances that the Southern Residents need for these activities and whether the whales are able to partially compensate for masking noise. Acoustic responses to sound, including changes in the composition, rates, lengths, and “loudness” of calls, also require evaluation. For example, Foote et al. (2004) reported that call duration of the Southern Residents increased over time as the number of whale-watching vessels increased in the area.
B.6.2.6 Assess the effects of human-generated marine noise on Southern Resident prey.

Fish are also considered vulnerable to intense underwater sounds. Increased levels of background sound can mask sounds critical to fish survival, decrease auditory sensitivity, and modify behavior. Research is needed to determine whether prey populations change their behavior in response to anthropogenic sound, making the capture of individual fish more difficult for the Southern Residents.

B.6.3 Assess the effects of contaminants.

Southern Resident whales carry high concentrations of PCBs and other persistent organic pollutants and likely have rapidly increasing levels of PBDEs, making them by far the most contaminated resident killer whale community in the northeastern Pacific. The levels are high enough to cause reproductive failure and other physiological effects in some marine mammal species, therefore, it is critical to evaluate the effects on this population. The sources of these and other chemical pollutants in the whales are unknown, but probably stem in part from the population’s occurrence in the heavily developed Georgia Basin and Puget Sound during much of the year. It is essential to learn more about the contaminant burdens carried by the whales, their impacts on the population, and levels of exposure.

B.6.3.1 Determine contaminant levels in the Southern Residents and other killer whale communities in the northeastern Pacific.

Two studies (Ross et al. 2000, Rayne et al. 2004) have described concentrations of PCBs (and their various components), PCDDs, PCDFs, PBDEs, PBBs, and PCNs in live Southern Resident whales, but were based on a small number of biopsy samples collected from 1993-1996. Updated and expanded tissue sampling of more members of the population is needed to obtain contaminant trend information and to examine differences among individual whales, age and sex categories, pods, and birth order rankings. Continued periodic sampling and testing for a broader range of compounds are strongly recommended. Tissue sampling of stranded individuals should also continue. Sampling of other regional killer whale populations may help clarify the sources of contaminants.

B.6.3.2 Determine contaminant levels in Southern Resident prey.

Aside from the recent findings of O’Neil et al. (2005), who characterized PCB levels in Chinook salmon from California to British Columbia, relatively little information is available on pollutant concentrations in Southern Resident prey. Better data are needed for virtually all prey.
species to provide a greater understanding of exposure to the whales. Levels of contamination should be assessed for a variety of compounds and prey subcategories (see Task B.6.1.2).

B.6.3.3 Determine the sources of contaminants entering Southern Resident prey.

Better data should be gathered on the pathways through which prey become contaminated. This work will require expanded assessment of pollutant levels in food webs and the general environment throughout the Southern Residents’ distribution, and can be achieved through review of existing data sources and increased survey efforts. Estimates of inputs from specific point and non-point sources (e.g., through development of numerical source loading models) are needed. Monitoring of contaminant levels in biota at various trophic levels (e.g., harbor seals, harbor porpoises, other fish, and mussels) and sediments will provide essential information on spatial and temporal patterns of contamination across the region, including additional sites requiring cleanup or management (Task 1.2).

B.6.3.4 Determine the effects of elevated contaminant levels on survival, physiology, and reproduction in the Southern Residents.

Exposure to moderate to high contaminant concentrations has been linked to a number of negative health effects in marine mammals, including impaired reproduction, immunotoxicity, hormonal and enzyme dysfunction, and skeletal deformities. Studies are needed to establish whether the Southern Residents are experiencing similar physiological effects and whether these are influencing life history parameters and population trends. Factors (e.g., nutritional stress or age) that may exacerbate the impacts of contaminants should also be investigated.

B.6.4 Determine risks from other human-related activities.

A variety of other anthropogenic threats (e.g., oil and chemical spills, seismic testing, certain military activities, fisheries-related entanglements and interactions, direct persecution, and ship collisions) are potentially harmful to the Southern Residents (Tasks 2.1 and 2.3). Although programs such as the MMPA reporting system are already established for fishermen to report injuries and deaths of marine mammals (insert website), improved documentation and monitoring of a variety activities and any impacts on the whales are needed. Moreover, disaster response strategies developed for oil and chemical spills (Task 2.1.2) should include post-event tissue sampling to assess exposure and evaluate physiological responses. This task will become especially relevant as more is learned about the outer coastal areas occupied by the population.

B.6.5 Evaluate the potential for disease.
A recent summary of disease threats to the Southern Residents identified several high priority pathogens warranting further study (Gaydos et al. 2004). Surveillance for these and other diseases should be expanded to cover all populations of killer whales and cetaceans in the northeastern Pacific (Task 2.2).

B.7 Identify important habitats for the Southern Residents.

These habitats include sites that are regularly visited for feeding and other necessary activities, as well as locations of importance to major prey species. Such sites can likely be determined by examining movement and distribution patterns and identifying areas of repeated use by both whales and their prey. Site visits to investigate reasons for use (e.g., foraging or other behavior) of specific locations may be needed, especially for offshore areas. The value of many important habitats to the whales will probably differ among pods and vary seasonally with prey occurrence. Habitat assessment is also necessary in determining critical habitat and evaluating potential sites for protected areas.

B.8 Determine the effects of variable oceanographic conditions on the Southern Residents and their prey.

Cyclic changes in climate trends across the North Pacific Ocean, such as the Pacific Decadal Oscillation, produce fluctuating oceanographic and atmospheric conditions that strongly affect ocean productivity and prey abundance. These changes presumably influence prey availability for the Southern Residents and therefore may affect the whales’ survival, movements, and other life history traits. The consequences of changing oceanographic patterns on the population should be examined as more is learned about the biology of the whales and the biotic and abiotic effects of these climate regimes. Similarly, more information is needed on effects to prey populations. The influences of global climate change on regional climate regimes and prey abundance should also be evaluated.

B.9 Determine genetic relationships.

A better understanding of the genetic relationships within and among killer whale communities in the northeastern Pacific is needed to assess rates of gene flow and risk from inbreeding, and to solve taxonomic concerns affecting population management.

B.9.1 Determine paternity patterns in the Southern Residents.

Additional genetic analyses should be made to establish paternity in the Southern Residents. This will yield important information on the contribution of individual males in siring calves, and whether mating takes place strictly among the Southern Resident pods, or if genetic exchange occurs on a limited basis with neighboring Northern Resident and offshore populations. Such knowledge will help assess the risk of inbreeding in the Southern Resident population. Given the
low numbers of mature males in J and K pods, it will also assist evaluations of recent patterns of reproductive success in L pod.

B.9.2 Determine the risk of inbreeding.

The Southern Residents may be at risk from inbreeding depression because of the population’s small size. Only 34 breeding adults remain in the population, but effective population size is perhaps even smaller. Assessments are needed to determine if genetic diversity is decreasing over time, and to genetically determine the mating system of the population.

B.9.3 Determine historical population size.

The historical abundance of the Southern Resident population is unknown. Estimating historical population size is important, both for setting recovery goals and understanding the vulnerability of the population to inbreeding depression.

B.9.4 Determine genetic relationships among populations.

Better data are needed on the genetic relationships among killer whale communities in the northeastern Pacific to estimate rates of gene flow among groups and resolve taxonomic issues, such as the status of Southern Residents as a distinct population segment. Comparisons of physical and other biological parameters should also be conducted to determine relationships among killer whale populations. This information will improve understanding of the degree to which the Southern Resident population is evolutionarily isolated and demographically closed.

B.9.5 Expand the number of genetic samples available for study.

Acquisition of a substantially larger set of tissue samples is an important priority for conducting future genetic analyses of the Southern Residents and other regional populations (Barrett-Lennard and Ellis 2001). Samples can be obtained using proven remote biopsy darting methods and should be gathered from all or most of the Southern Residents. Priority should be given to sampling the oldest population members before these animals die.

B.10 Improve research techniques and technology.

Improvements in study methods and equipment will greatly benefit future research efforts and allow important long-standing questions to be answered. Needs include: 1) better methods for assessing the physical condition of animals, analyzing genetic and contaminant samples, evaluating diet and prey abundance, and conducting acoustic surveys, and 2) improved equipment for telemetry and other tagging studies, and acoustic surveys. Development of non-invasive techniques is especially desirable. In some cases,
new techniques and technology should be tested on other species or non-threatened killer whale populations before application to the Southern Residents.

B.11 Research support and coordination

The NWFSC conducts workshops with the research community to evaluate research needs, discuss methodology, and identify priorities. A long-term research plan is in development and will be coordinated with WDFW and DFO. Outreach to educate the public on research goals and progress is also important (Task 3.1).
VI. IMPLEMENTATION SCHEDULE AND COSTS

The following table shows the priorities and estimated costs for the actions set forth in this recovery plan. It is a guide for meeting the recovery goals outlined in this plan. The following table includes action numbers, action descriptions, priorities, the parties responsible for actions (either funding or carrying out), duration of actions, and estimated costs. Responsible parties are agencies or organizations with authority, responsibility, or expressed interest to implement a specific conservation action. When more than one party has been identified, the proposed lead party is the first party listed. The listing of a party in the table does not require the identified party to implement the action(s) or to secure funding for implementing the action(s). Costs are estimates for the Fiscal Year (FY) in thousands of dollars ($K) and are not corrected for inflation. Costs are included for specific actions under an outline heading or are listed as costs for an outline heading without further breakdown for specific costs. Costs for FY03-FY06 are shaded and have been included to provide information on conservation and research actions that have already occurred and the costs that were associated with completing those actions. There are many ongoing programs in place that benefit Southern Resident killer whales, but would be carried out regardless of the status of killer whales. Estimates of partial costs of these large-scale ongoing programs (e.g., oil spill prevention, contaminated site clean up) are included at this time.

Priorities are assigned as follows:

Priority 1 Actions that must be taken to prevent extinction or to prevent the species from declining irreversibly.

Priority 2 Actions that must be taken to prevent a significant decline in the population or its habitat quality, or in some other significant negative impact short of extinction.

Priority 3 All other actions necessary to provide for full recovery of the species.

Research and monitoring priorities are assigned as follows:

Priority 1 Actions that must be taken to identify those actions necessary to prevent extinction.

Priority 2 Actions that must be taken to prevent a significant decline in the population or its habitat quality, or in some other significant negative impact short of extinction.

Priority 3 All other necessary research actions for full recovery.

Responsible parties and involved collaborators for research actions may include NWFSC, DFO, WDFW, and researchers from other organizations. For ongoing research projects, responsible parties have been identified.
<table>
<thead>
<tr>
<th>Task No.</th>
<th>Task Description</th>
<th>Priority</th>
<th>Responsible Parties</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Protect Southern Resident killer whales from factors causing decline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Rebuild depleted populations of salmon and other prey to ensure an adequate food</td>
<td></td>
<td></td>
<td>Many salmon recovery efforts and management programs are currently ongoing by a variety</td>
</tr>
<tr>
<td></td>
<td>base for recovery of the Southern Residents</td>
<td></td>
<td></td>
<td>of agencies and stakeholders. However, it is unlikely that additional costs will be incurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by the listing and recovery needs of Southern Resident killer whales.</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Support salmon restoration efforts in the region</td>
<td></td>
<td></td>
<td>See 1.1</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Habitat management</td>
<td>2</td>
<td>NMFS, state/tribal/</td>
<td>See 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>local recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>initiatives, NGO,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DFO</td>
<td></td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Harvest management</td>
<td>2</td>
<td>NMFS, state/tribal/</td>
<td>See 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>local recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>initiatives, NGO,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DFO</td>
<td></td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Hatchery management</td>
<td>2</td>
<td>NMFS, state/tribal/</td>
<td>See 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>local recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>initiatives, NGO,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DFO</td>
<td></td>
</tr>
<tr>
<td>1.1.2</td>
<td>Support regional restoration efforts for other prey species</td>
<td>3</td>
<td>NMFS, state/tribal/</td>
<td>See 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>local recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>initiatives, NGO,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DFO</td>
<td></td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Use NMFS authorities under the ESA and the MSFCMA to protect prey habitat, regulate harvest, and operate hatcheries</td>
<td>2</td>
<td>NMFS</td>
<td>See 1.1</td>
</tr>
<tr>
<td>1.2</td>
<td>Minimize pollution and chemical contamination in Southern Resident habitats</td>
<td></td>
<td></td>
<td>Many pollution control and site cleanup efforts are currently ongoing with support from a variety of agencies and stakeholders; (i.e., $570 million estimated by PSP, $182 million for PSAT 2005-2007) additional costs which may be incurred for specific cleanup actions aimed at Southern Resident killer whales are shown below.</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Identify and prioritize specific sites in need of cleanup</td>
<td>2</td>
<td>CTC, NMFS, EC, DFO, EPA, WDOE, WDNR</td>
<td>100 30 40</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Remediate sites in need of cleanup</td>
<td>2</td>
<td>EPA, WDNR, potentially responsible/ liable parties, Superfund sites See Appendix C</td>
<td>See 1.2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Minimize continuing inputs of contaminants into the environment</td>
<td></td>
<td></td>
<td>See 1.2</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Minimize the levels of harmful contaminants discharged by industrial, municipal, and other point sources of pollution</td>
<td>3</td>
<td>WDOE, EPA, ODEQ, DFO, local/municipal/provincial</td>
<td>See 1.2</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Minimize the levels of harmful contaminants released by non-point sources of pollution</td>
<td>2</td>
<td>WDOE, EPA, ODEQ, DFO, local/municipal/provincial</td>
<td>See 1.2</td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Develop environmental monitoring programs for emerging contaminants</td>
<td>3</td>
<td>WDOE, EPA, EC, local/municipal</td>
<td>See 1.2</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Minimize contamination in prey</td>
<td>3</td>
<td>WDFW, ODFW, NMFS, USFWS, tribes, DFO</td>
<td>See 1.2</td>
</tr>
<tr>
<td>1.3</td>
<td>Minimize disturbance of Southern Resident killer whales from vessels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>Monitor vessel activity around whales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Expand efforts to monitor commercial and recreational whale-watching vessels.</td>
<td>2</td>
<td>Soundwatch, M3, NMFS</td>
<td>Ongoing, see also B.6.2.2</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Evaluate the relative importance of shipping, ferry, fishing, research, military, and other vessel traffic to disturbance of killer whales.</td>
<td>3</td>
<td>NMFS, CTC</td>
<td>Initial report completed with FY06 funds; 1 year task to update report</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Continue to evaluate and improve voluntary whale-watching guidelines.</td>
<td>2</td>
<td>NMFS, M3, Soundwatch, DFO, NGO, WWOANW</td>
<td>Update guidelines in alternate years</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Evaluate the need to establish regulations regarding vessel activity in the vicinity of killer whales.</td>
<td>2</td>
<td>NMFS, DFO, USCG, WDFW, tribes, industry associations</td>
<td>2 year task coordinated with 1.3.4</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Evaluate the need to establish areas with restrictions on vessel traffic or closures to vessel traffic.</td>
<td>2</td>
<td>NMFS, DFO, USCG, WDFW, tribes, industry associations</td>
<td>2 year task coordinated with 1.3.3</td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties ¹</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Protect Southern Resident killer whales from additional threats that may cause disturbance, injury, or mortality, or impact habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Minimize the risk of large oil spills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Prevent oil spills</td>
<td>1</td>
<td>USCG, WDOE, EC</td>
<td>There are many ongoing oil spill programs including: Rescue Tug (1.44 million/yr) and ITOS (100K/yr)</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Prepare for and respond to oil spills to minimize their effects on Southern Resident killer whales</td>
<td>1</td>
<td>NMFS, CG, WDFW</td>
<td>One year task to develop Contingency Plan and training in alternate years, FY is TBD</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Develop strategies to deter killer whales from entering spilled oil</td>
<td>2</td>
<td>NMFS, WDFW</td>
<td>One year project- FY TBD</td>
</tr>
<tr>
<td>2.2</td>
<td>Monitor and minimize the risk of disease pathogens in Southern Resident habitats</td>
<td></td>
<td></td>
<td>Part of stranding response see 4</td>
</tr>
<tr>
<td>2.3</td>
<td>Continue to use agency coordination and established MMPA mechanisms to minimize any potential impacts from human activities involving acoustic sources, including Navy tactical sonar, seismic exploration, in-water construction, and other sources.</td>
<td>2</td>
<td>NMFS</td>
<td>No additional costs specific to killer whale listing or recovery currently identified</td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>2.4</td>
<td>Reduce the impacts of invasive species in Southern Resident habitats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Prevent the introduction and spread of invasive species</td>
<td>3</td>
<td>WDFW, USFWS, NMFS, USCG, WDOA, ODEQ, DFO</td>
<td>Washington State has ongoing invasives prevention program (2.5 million/yr)</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Eradicate existing populations of invasive species</td>
<td>3</td>
<td>WDFW, USFWS, NMFS, WDOA, ODEQ, DFO</td>
<td>Washington State has ongoing invasives eradication program (3.5 million/yr)</td>
</tr>
<tr>
<td>3</td>
<td>Develop public information and education programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Enhance public awareness of Southern Resident status and threats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>Exhibits at local museums, aquaria, parks, and other locations</td>
<td>3</td>
<td>SA, TWM, WSP, VA, NMFS</td>
<td>FY03- FY06 costs were for creation of a new orca exhibit and materials for SA</td>
</tr>
<tr>
<td>3.1.2</td>
<td>School programs</td>
<td>3</td>
<td>NGO</td>
<td>FY05-FY06 costs for Killer Whale Tales</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Naturalist programs</td>
<td>3</td>
<td>NGO</td>
<td>Support training in alternate years</td>
</tr>
<tr>
<td>3.2</td>
<td>Expand information and education programs to reduce direct vessel interactions with Southern Resident killer whales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Expand the on-water educational efforts of Soundwatch, M3, and enforcement agencies</td>
<td>2</td>
<td>NMFS, Soundwatch, M3, WDFW, DFO</td>
<td>NMFS costs are included here, additional costs are in 1.3.1.1</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Outreach to private boaters</td>
<td>3</td>
<td>NMFS, Soundwatch, M3, WDFW, DFO, CG</td>
<td>Costs are included under 1.3.1.1</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Encourage land-based viewing of killer whales</td>
<td>3</td>
<td>TWM, Orca Relief, Lifeforce, WSP, NGO</td>
<td>Update program in alternate years</td>
</tr>
<tr>
<td>3.3</td>
<td>Educate public on positive actions they can take to improve the current condition for Southern Resident killer whales</td>
<td>2</td>
<td>NGO, NMFS</td>
<td>Some costs included under 3.1</td>
</tr>
<tr>
<td>3.4</td>
<td>Solicit the public’s assistance in finding killer whales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>Solicit reports of killer whale sightings</td>
<td>3</td>
<td>NMFS, TWM, OrcaNetwork, CWR, BC Sighting Network</td>
<td>Costs included under B1.1</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Solicit reports of killer whale strandings from the public</td>
<td>3</td>
<td>NMFS, NMMSN, OrcaNetwork, CWR, BC Sighting Network</td>
<td>Education and outreach for NWMMMSN program</td>
</tr>
<tr>
<td>4</td>
<td>Respond to killer whales that are stranded, sick, injured, isolated, pose a threat to the public, or exhibit nuisance behaviors</td>
<td></td>
<td></td>
<td>It is not possible to estimate costs for stranding response. Killer whale strandings are rare events and the cost of stranding response varies greatly depending on situation, location, local capabilities, status and number of whales. The NWMMSN is involved in ongoing stranding response and the advent of the Prescott stranding grant program has been instrumental in increasing NWMMSN capabilities to respond to all strandings including killer whales.</td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>4.1</td>
<td>Manage atypical individual Southern Residents</td>
<td>3</td>
<td>NMFS, WDFW, DFO</td>
<td>Dependent on severity of situation, costs could range 100K-500K based on past atypical cases</td>
</tr>
<tr>
<td>4.2</td>
<td>Respond to strandings of killer whales</td>
<td></td>
<td></td>
<td>See Task 4</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Develop protocols for responding to stranded killer whales</td>
<td>3</td>
<td>NMFS, NMMSN, DFO, VA</td>
<td>Action completed</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Respond to live-stranded killer whales</td>
<td>2-3?</td>
<td>NMFS, NMMSN, DFO, VA</td>
<td>See Task 4</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Investigate strandings of dead killer whales</td>
<td>3</td>
<td>NMFS, NMMSN, DFO, VA</td>
<td>Cost for response to stranded killer whales in OR, CA</td>
</tr>
<tr>
<td>4.3</td>
<td>Respond to future resource conflicts between the Southern Residents and humans</td>
<td>3</td>
<td>NMFS, others as identified</td>
<td>As identified in the future</td>
</tr>
<tr>
<td>5</td>
<td>Trans-boundary and interagency coordination and cooperation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Cooperative research and monitoring</td>
<td>3</td>
<td>NMFS, DFO, WDFW, researchers</td>
<td>Future costs included under B.11</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Population monitoring</td>
<td>3</td>
<td>NMFS, DFO, WDFW, CWR</td>
<td>Costs included under A.1</td>
</tr>
</tbody>
</table>
Task Description Table

| Task No. | Task Description | Priority | Responsible Parties | Comments | FY03 | FY04 | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 |
|----------|---|----------|---------------------|----------|------|------|------|------|------|------|------|------|------|------|
| 5.1.2 | Stranding response coordination | 3 | NMFS, DFO, WDFW | Costs estimated as < 1K per stranding event, see 4 | | | | | | | | | |
| 5.2 | Complimentary conservation and recovery planning | | | No costs identified at this time | | | | | | | | | |
| 5.2.1 | Plans are subject to periodic review | 3 | NMFS, DFO, WDFW | 1 year task to update plan | | | | | | | | 50 | |
| 5.2.2 | Encourage public participation | 3 | NMFS, DFO, WDFW | 1 year task to update plan | | | | | | | | 10 | |
| 5.3 | Inter-jurisdictional enforcement cooperation and coord | 3 | NMFS, DFO, WDFW | 15 10 15 25 20 20 20 20 | | | | | | | | | |
| 5.4 | Funding for conservation | 3 | NMFS, DFO, WDFW | No costs identified at this time | | | | | | | | | |

TOTALS 227 412 307 417 477 547 387 437 437

TOTAL FY07-FY11 $2,285

RESEARCH AND MONITORING

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Task Description</th>
<th>Priority</th>
<th>Responsible Parties</th>
<th>Comments</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Monitor status and trend of Southern Resident killer whales</td>
<td>2</td>
<td>CWR</td>
<td></td>
<td>15</td>
<td>16</td>
<td>21</td>
<td>88</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

A.1 Continue the annual population census

November 2006 174 NMFS
<table>
<thead>
<tr>
<th>Task No.</th>
<th>Task Description</th>
<th>Priority</th>
<th>Responsible Parties</th>
<th>Comments</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2</td>
<td>Maintain a current photo-identification catalog for Southern Residents and staff able to photographically identify whales</td>
<td>2</td>
<td>CWR</td>
<td>Costs included under A.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>Standardize the results of annual population surveys</td>
<td>3</td>
<td>CWR, DFO, NMFS</td>
<td>1 year task FY to be determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Conduct research to facilitate and enhance conservation efforts for Southern Resident killer whales</td>
<td></td>
</tr>
<tr>
<td>B.1.1</td>
<td>Determine distribution and movements in outer coastal waters</td>
<td>1</td>
<td>NWFSC, DFO, WFDW, researchers</td>
<td></td>
<td>90</td>
<td>285</td>
<td>290</td>
<td>290</td>
<td>775</td>
<td>775</td>
<td>775</td>
<td>775</td>
<td>775</td>
</tr>
<tr>
<td>B.1.2</td>
<td>Improve knowledge of distribution and movements in the Georgia Basin and Puget Sound</td>
<td>1</td>
<td>NWFSC, SWFSC, UW, TWM</td>
<td></td>
<td></td>
<td>31</td>
<td>95</td>
<td>29</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>B.1.3</td>
<td>Determine the effects of prey abundance and availability, and other factors on whale distribution and movements</td>
<td>1</td>
<td>NWFSC, UW, TWM, researchers</td>
<td>Costs included under B.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>Investigate the diet of the Southern Residents</td>
<td></td>
</tr>
<tr>
<td>B.2.1</td>
<td>Determine the diet of the Southern Residents</td>
<td>1</td>
<td>NWFSC, DFO, WFDW, researchers</td>
<td></td>
<td>34</td>
<td>103</td>
<td>94</td>
<td>79</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Determine the importance of specific prey populations to the diet</td>
<td>1</td>
<td></td>
<td>Costs included under B.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.3</td>
<td>Determine the extent of feeding on hatchery fish</td>
<td>3</td>
<td></td>
<td>Costs included under B.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
<td>FY03</td>
<td>FY04</td>
<td>FY05</td>
<td>FY06</td>
<td>FY07</td>
<td>FY08</td>
<td>FY09</td>
<td>FY10</td>
<td>FY11</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>B.3</td>
<td>Analyze the population dynamics of the Southern Residents</td>
<td></td>
<td></td>
<td>Total costs for B.3.1- B.3.5</td>
<td></td>
<td>31</td>
<td>29</td>
<td>83</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Determine causes of mortality</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B.3.2</td>
<td>Evaluate survival patterns</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B.3.3</td>
<td>Evaluate reproductive patterns</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B.3.4</td>
<td>Evaluate population structure</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B.3.5</td>
<td>Evaluate changes in social structure</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B.4</td>
<td>Investigate the health and physiology of the Southern Residents</td>
<td></td>
</tr>
<tr>
<td>B.4.1</td>
<td>Assess the health of population members</td>
<td>2</td>
<td></td>
<td>Future costs TBD</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.4.2</td>
<td>Assess individual growth rates</td>
<td>2</td>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.4.3</td>
<td>Determine metabolic rates and energy requirements</td>
<td>1</td>
<td>NWFSC</td>
<td></td>
<td>40</td>
<td>41</td>
<td>49</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>B.5</td>
<td>Investigate the behavior of the Southern Residents</td>
<td>3</td>
<td></td>
<td>Some costs included under B.6.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6</td>
<td>Assess threats to the Southern Residents</td>
<td></td>
</tr>
<tr>
<td>B.6.1</td>
<td>Assess the effects of changes in prey populations</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B.6.1.1</td>
<td>Determine historical changes in prey distribution and abundance, and their effects on Southern Resident population dynamics</td>
<td>1</td>
<td>NWFSC, UW</td>
<td></td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.1.2</td>
<td>Assess changes in prey quality and their effects on Southern Resident population dynamics</td>
<td>1</td>
<td>NWFSC, UW</td>
<td></td>
</tr>
<tr>
<td>B.6.1.3</td>
<td>Determine whether the Southern Residents are limited by critical periods of scarce food resources</td>
<td>1</td>
<td></td>
<td>Costs included under B.6.1.1 and B.6.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
<td>FY03</td>
<td>FY04</td>
<td>FY05</td>
<td>FY06</td>
<td>FY07</td>
<td>FY08</td>
<td>FY09</td>
<td>FY10</td>
<td>FY11</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>B.6.1.4</td>
<td>Assess threats to prey populations of the Southern Residents</td>
<td>2</td>
<td></td>
<td>Costs included under B.6.1.1 and B.6.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2</td>
<td>Assess the effects of human-generated marine noise and vessel traffic</td>
<td></td>
</tr>
<tr>
<td>B.6.2.1</td>
<td>Determine vessel characteristics that affect the Southern Residents</td>
<td>1</td>
<td>NWFSC, DFO, UW, researchers</td>
<td>112 202 95 116 150 150 150 150 150 150 150 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2.2</td>
<td>Determine the extent that vessels disturb or harm the Southern Residents</td>
<td>1</td>
<td>NWFSC, DFO, UW, researchers</td>
<td>Costs included under B.6.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2.3</td>
<td>Determine the extent that other acoustic sources disturb or harm the Southern Residents</td>
<td>2</td>
<td>NWFSC, DFO, UW, researchers</td>
<td>Costs included under B.6.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2.4</td>
<td>Determine the acoustic environment of the Southern Residents</td>
<td>2</td>
<td>NWFSC, DFO, UW, researchers</td>
<td>88 50 10 25 175 175 175 175 175 175 175 175 175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2.5</td>
<td>Determine the hearing capabilities and vocalization behavior of the Southern Residents near sound sources</td>
<td>2</td>
<td></td>
<td>Some costs included under B.6.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.2.6</td>
<td>Assess the effects of human-generated marine sound on Southern Resident prey</td>
<td>3</td>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.3</td>
<td>Assess the effects of contaminants</td>
<td></td>
</tr>
<tr>
<td>B.6.3.1</td>
<td>Determine contaminant levels in the Southern Residents and other killer whale communities in the northeastern Pacific</td>
<td>1</td>
<td>NWFSC, DFO, WDFW</td>
<td>60 40 40 135 135 135 135 135 135 135 135 135 135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.3.2</td>
<td>Determine contaminant levels in Southern Resident prey</td>
<td>1</td>
<td>NWFSC, DFO, WDFW</td>
<td>Costs for FY07-FY11 included under B.6.3.1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task No.</td>
<td>Task Description</td>
<td>Priority</td>
<td>Responsible Parties</td>
<td>Comments</td>
<td>FY03</td>
<td>FY04</td>
<td>FY05</td>
<td>FY06</td>
<td>FY07</td>
<td>FY08</td>
<td>FY09</td>
<td>FY10</td>
<td>FY11</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>B.6.3.3</td>
<td>Determine the sources of contaminants entering Southern Resident prey</td>
<td>1</td>
<td></td>
<td>Costs included under B.6.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.3.4</td>
<td>Determine the effects of elevated contaminant levels on survival, physiology, and reproduction in the Southern Residents</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>B.6.4</td>
<td>Determine risks from other human-related activities</td>
<td>2</td>
<td></td>
<td>As identified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.6.5</td>
<td>Evaluate the potential for disease</td>
<td>3</td>
<td></td>
<td>No costs identified at this time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.7</td>
<td>Identify important habitats for the Southern Residents</td>
<td>1</td>
<td></td>
<td>Costs included under B.1.1- B.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.8</td>
<td>Determine the effects of variable oceanographic conditions on the Southern Residents and their prey</td>
<td>1</td>
<td></td>
<td>Costs included under B.1.1- B.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.9</td>
<td>Determine genetic relationships</td>
<td>105</td>
<td></td>
<td></td>
<td>65</td>
<td>65</td>
<td>67</td>
<td>40</td>
<td>150</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>B.9.1</td>
<td>Determine paternity patterns in the Southern Residents</td>
<td>2</td>
<td></td>
<td>Costs included under B.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.9.2</td>
<td>Determine the risk of inbreeding</td>
<td>1</td>
<td></td>
<td>Costs included under B.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.9.3</td>
<td>Determine historical population size</td>
<td>2</td>
<td></td>
<td>Costs included under B.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.9.4</td>
<td>Determine genetic relationships among populations</td>
<td>2</td>
<td></td>
<td>Costs included under B.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.9.5</td>
<td>Expand the number of genetic samples available for study</td>
<td>2</td>
<td></td>
<td>Costs included under B.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.10</td>
<td>Improve research techniques and technology</td>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>B.11</td>
<td>Research support and coordination</td>
<td>2</td>
<td>NWFSC</td>
<td></td>
<td>208</td>
<td>212</td>
<td>131</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>

TOTALS: 580 1098 1004 1060 2630 2535 2530 2530 2530
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>TOTAL FY07-FY11</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$12,755</td>
</tr>
</tbody>
</table>
Key to Acronyms Used in the Implementation Schedule

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC</td>
<td>Concurrent Technologies Corporation</td>
</tr>
<tr>
<td>CWR</td>
<td>Center for Whale Research</td>
</tr>
<tr>
<td>DFO</td>
<td>Fisheries and Oceans Canada</td>
</tr>
<tr>
<td>EC</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ITOS</td>
<td>International Tug of Opportunity System</td>
</tr>
<tr>
<td>M3</td>
<td>Marine Mammal Monitoring Project</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organizations</td>
</tr>
<tr>
<td>NMFS</td>
<td>NMFS Fisheries</td>
</tr>
<tr>
<td>NMMSN</td>
<td>Northwest Marine Mammal Stranding Network</td>
</tr>
<tr>
<td>NWACP</td>
<td>Northwest Area Contingency Plan</td>
</tr>
<tr>
<td>NWFSC</td>
<td>NMFS, Northwest Fisheries Science Center</td>
</tr>
<tr>
<td>ODEQ</td>
<td>Oregon Department of Environmental Quality</td>
</tr>
<tr>
<td>ODFW</td>
<td>Oregon Department of Fish and Wildlife</td>
</tr>
<tr>
<td>OLE</td>
<td>NMFS, Office of Law Enforcement</td>
</tr>
<tr>
<td>PSAT</td>
<td>Puget Sound Action Team</td>
</tr>
<tr>
<td>PSP</td>
<td>Puget Sound Partnership</td>
</tr>
<tr>
<td>SA</td>
<td>Seattle Aquarium</td>
</tr>
<tr>
<td>Soundwatch</td>
<td>Soundwatch Boater Education Program</td>
</tr>
<tr>
<td>SWFSC</td>
<td>NMFS, Southwest Fisheries Science Center</td>
</tr>
<tr>
<td>TWM</td>
<td>The Whale Museum</td>
</tr>
<tr>
<td>USCG</td>
<td>U.S. Coast Guard</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>UW</td>
<td>University of Washington</td>
</tr>
<tr>
<td>VA</td>
<td>Vancouver Aquarium</td>
</tr>
<tr>
<td>WDFW</td>
<td>Washington Department of Fish and Wildlife</td>
</tr>
<tr>
<td>WDNR</td>
<td>Washington Department of Natural Resources</td>
</tr>
<tr>
<td>WDOE</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>WSP</td>
<td>Washington State Parks and Recreation Commission</td>
</tr>
<tr>
<td>WWOANW</td>
<td>Whale Watch Operators Association Northwest</td>
</tr>
</tbody>
</table>
VII. LITERATURE CITED

Bigg, M. A., I. B. MacAskie, and G. Ellis. 1976. Abundance and movements of killer whales off eastern and southern Vancouver Island with comments on management. Arctic Biological Station, Ste. Anne de Bellevue, Quebec.

Center for Biological Diversity. 2001. Petition to list the southern resident killer whale (Orcinus orca) as an endangered species under the Endangered Species Act. Center for Biological Diversity, Berkeley, California.

DFO (Department of Fisheries and Oceans). 1999. Fraser River chinook salmon. DFO Science Stock Status Report D6-11, Department of Fisheries and Oceans, Nanaimo, British Columbia.

DFO (Department of Fisheries and Oceans). 2001. 2000 Pacific region state of the ocean. DFO Science Ocean Status Report 2001/01, Department of Fisheries and Oceans, Nanaimo, British Columbia.

Ford, J. K. B., G. M. Ellis, and L. M. Nichol. 1992. Killer whales of the Queen Charlotte Islands: a preliminary study of the abundance, distribution and population identity of *Orcinus orca* in the waters...

Hoyt, E. 1992. The performing orca -- why the show must stop. Whale and Dolphin Conservation Society, Bath, United Kingdom.

Reeves, R. R., S. Leatherwood, G. S. Stone, and L. G. Eldredge. 1999. Marine mammals in the area served by the South Pacific Regional Environmental Programme (SPREP). South Pacific Regional Environmental Programme, Apia, Samoa.

Visser, I. N. 2005. First observations of feeding on thresher (Alopias vulpinus) and hammerhead (Sphyrna zygaena) sharks by killer whales (Orcinus orca), which specialize on elasmobranchs as prey. Aquatic Mammals 31:83-88.

Appendix A. The current “Be Whale Wise” guidelines recommended for vessels, kayaks, and other craft watching killer whales in Washington and British Columbia by the Soundwatch Boater Education Program and Marine Mammal Monitoring Project (M3).
Appendix B. List of major sewage treatment plants and pulp and paper mills in the Puget Sound and Georgia Basin regiona.

<table>
<thead>
<tr>
<th>Sewage treatment plants</th>
<th>Pulp and paper mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewage treatment plants</td>
<td>Pulp and paper mills</td>
</tr>
<tr>
<td>Washington</td>
<td>British Columbia</td>
</tr>
<tr>
<td>Bellingham STP</td>
<td>Norske Skog Canada, Elk Falls</td>
</tr>
<tr>
<td>Dakar, STP</td>
<td>Pacifica Papers, Port Alberni</td>
</tr>
<tr>
<td>Federal Way</td>
<td>Pope & Talbot, Harmane</td>
</tr>
<tr>
<td>Lakota STP, Federal Way</td>
<td>Norske Skog Canada, Crofton</td>
</tr>
<tr>
<td>Tacoma Central No. 1</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Mt. Vernon STP</td>
<td>Western Pulp Limited Partnership, Squamish</td>
</tr>
<tr>
<td>Tacoma North No. 3</td>
<td>Howe Sound Pulp & Paper, Port Mellon</td>
</tr>
<tr>
<td>Everett STP</td>
<td>Norampac Paper, New Westminster</td>
</tr>
<tr>
<td>Chambers Creek, University Place</td>
<td>Scott Paper, New Westminster</td>
</tr>
<tr>
<td>Lynnwood STP</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Puyallup STP</td>
<td>Western Pulp Limited Partnership, Squamish</td>
</tr>
<tr>
<td>Edmonds STP</td>
<td>Howe Sound Pulp & Paper, Port Mellon</td>
</tr>
<tr>
<td>Sumner STP</td>
<td>Norampac Paper, New Westminster</td>
</tr>
<tr>
<td>Metro Alki Point, Seattle</td>
<td>Scott Paper, New Westminster</td>
</tr>
<tr>
<td>Enumclaw STP</td>
<td>Steilacoom</td>
</tr>
<tr>
<td>Metro West Point, Seattle</td>
<td>Sonoco, Sumner</td>
</tr>
<tr>
<td>LOTT, Olympia area</td>
<td>Stone Consolidated (Abitibi)b, Steilacoom</td>
</tr>
<tr>
<td>Salmon Creek WWTP, Burien</td>
<td>Port Townsend Paper, Port Townsend</td>
</tr>
<tr>
<td>Port Angeles STP</td>
<td>Stone Consolidated (Abitibi)b, Steilacoom</td>
</tr>
<tr>
<td>Metro Renton, Renton</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Kitsap County Central Kitsap, Poulsbo</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Miller Creek WWTP, Normandy Park</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Bremerton STP</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Midway Sewer District, Des Moines</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Shelton STP</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>Redondo STP, Des Moines</td>
<td>Kitsap County Central Kitsap, Poulsbo</td>
</tr>
<tr>
<td>British Columbia</td>
<td>Pulp and paper mills</td>
</tr>
<tr>
<td>Campbell River</td>
<td>British Columbia</td>
</tr>
<tr>
<td>Chilliwick</td>
<td>Norske Skog Canada, Elk Falls</td>
</tr>
<tr>
<td>Comox Valley Regional</td>
<td>Pacifica Papers, Port Alberni</td>
</tr>
<tr>
<td>Northwest Langley</td>
<td>Pope & Talbot, Harmane</td>
</tr>
<tr>
<td>Powell River</td>
<td>Norske Skog Canada, Crofton</td>
</tr>
<tr>
<td>Nanaimo</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Westview</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>French Creek, Nanaimo</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Squamish</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Ladysmith</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Lion’s Gate, Vancouver</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Salt Spring Island</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Iona Island, Vancouver</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Sydney</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Lulu Island, Vancouver</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Clover Point, Victoria</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Annacis Island, Vancouver</td>
<td>Pacifica Papers, Powell River</td>
</tr>
<tr>
<td>Macaulay Point, Victoria</td>
<td>Pacifica Papers, Powell River</td>
</tr>
</tbody>
</table>

a Adapted from Grant and Ross (2002), with additional information from the Washington State Department of Ecology. Many of these sites discharge their effluent directly into marine waters and may have once been significant polluters.

b Now closed.
Appendix C. Past and present Superfund sites located in the greater Puget Sound region, with a listing of primary contaminants (U.S. Environmental Protection Agency 2006).

<table>
<thead>
<tr>
<th>Site name</th>
<th>Location</th>
<th>Contaminated media</th>
<th>Major contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Transformer, Mission Pole</td>
<td>Everson, Whatcom Co.</td>
<td>Soils, sludges</td>
<td>PCBs, others</td>
</tr>
<tr>
<td>Northwest Transformer, S. Harkness St.</td>
<td>Everson, Whatcom Co.</td>
<td>Soils, sludges</td>
<td>PCBs, heavy metals</td>
</tr>
<tr>
<td>Oeser Company</td>
<td>Bellingham, Whatcom Co.</td>
<td>Soils, sludges</td>
<td>Others</td>
</tr>
<tr>
<td>Whidbey Island Naval Air Station, Ault Field</td>
<td>Whidbey Island, Island Co.</td>
<td>Soils, marine and freshwater sediments, groundwater</td>
<td>PCBs, pesticides, dioxins, heavy metals, others</td>
</tr>
<tr>
<td>Whidbey Island Naval Air Station, Seaplane Base</td>
<td>Whidbey Island, Island Co.</td>
<td>Soils, sludges, groundwater, surface water</td>
<td>Pesticides, heavy metals, others</td>
</tr>
<tr>
<td>Tulalip Landfill</td>
<td>Marysville, Snohomish Co.</td>
<td>Surface water, soils, marine and freshwater sediments, groundwater</td>
<td>PCBs, DDT, heavy metals, others</td>
</tr>
<tr>
<td>Harbor Island</td>
<td>Seattle, King Co.</td>
<td>Soils, marine and freshwater sediments, groundwater</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>Lower Duwamish Waterway</td>
<td>Seattle, King Co.</td>
<td>Freshwater sediments, surface water</td>
<td>PCBs, others</td>
</tr>
<tr>
<td>Pacific Sound Resources</td>
<td>Seattle, King Co.</td>
<td>Marine and freshwater sediments, groundwater</td>
<td>PCBs, heavy metals, others</td>
</tr>
<tr>
<td>Pacific Car and Foundry (PACCAR)</td>
<td>Renton, King Co.</td>
<td>Soils</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>Midway Landfill</td>
<td>Kent, King Co.</td>
<td>Groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Seattle Municipal Landfill</td>
<td>Kent, King Co.</td>
<td>Groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Western Processing Company</td>
<td>Kent, King Co.</td>
<td>Soils, freshwater sediments, groundwater</td>
<td>PCBs, dioxins, heavy metals, others</td>
</tr>
<tr>
<td>Queen City Farms</td>
<td>Maple Valley, King Co.</td>
<td>Soils, sludges, groundwater, surface water</td>
<td>PCBs, heavy metals, others</td>
</tr>
<tr>
<td>Port Hadlock Detachment, U.S. Navy</td>
<td>Indian Island, Jefferson Co.</td>
<td>Marine sediment, shellfish, soils, groundwater</td>
<td>PCBs, pesticides, heavy metals, others</td>
</tr>
<tr>
<td>Naval Undersea Warfare Center</td>
<td>Keyport, Kitsap Co.</td>
<td>Soils, marine sediments, shellfish, groundwater</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>Bangor Naval Submarine Base</td>
<td>Silverdale, Kitsap Co.</td>
<td>Soils, sludges, surface water, groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Bangor Ordnance Disposal, U.S. Navy</td>
<td>Silverdale, Kitsap Co.</td>
<td>Soils, sludges, surface water, groundwater</td>
<td>Others</td>
</tr>
</tbody>
</table>
Appendix C. Past and present Superfund sites in the greater Puget Sound region (cont’d).

<table>
<thead>
<tr>
<th>Site name</th>
<th>Location</th>
<th>Contaminated media</th>
<th>Major contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff Company/Eagle Harbor</td>
<td>Bainbridge Island, Kitsap Co.</td>
<td>Soils, marine sediments, groundwater</td>
<td>Dioxins, furans, heavy metals, others</td>
</tr>
<tr>
<td>Jackson Park Housing Complex, U.S. Navy</td>
<td>Bremerton, Kitsap Co.</td>
<td>Soils, sludges, surface water</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Puget Sound Naval Shipyard Complex</td>
<td>Bremerton, Kitsap Co.</td>
<td>Soils, sludges, marine sediments, groundwater</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>Old Navy Dump/Manchester Lab</td>
<td>Manchester, Kitsap Co.</td>
<td>Soils, sludges, marine sediments, surface water, shellfish</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>Commencement Bay Nearshore/ Tideflats</td>
<td>Tacoma, Pierce Co.</td>
<td>Surface water, soils, marine sediments, groundwater</td>
<td>PCBs, heavy metals, others</td>
</tr>
<tr>
<td>Commencement Bay South Tacoma Channel</td>
<td>Tacoma, Pierce Co.</td>
<td>Surface water, soils, marine sediments, groundwater</td>
<td>PCBs, heavy metals, petroleum products, others</td>
</tr>
<tr>
<td>American Lake Gardens, McChord AFB</td>
<td>Tacoma, Pierce Co.</td>
<td>Groundwater</td>
<td>Others</td>
</tr>
<tr>
<td>McChord AFB (Wash Rack/Treat)²</td>
<td>Tacoma, Pierce Co.</td>
<td>Groundwater</td>
<td>Petroleum products, others</td>
</tr>
<tr>
<td>Lakewood Site</td>
<td>Lakewood, Pierce Co.</td>
<td>Soils, sludges, groundwater</td>
<td>Others</td>
</tr>
<tr>
<td>Hidden Valley Landfill (Thun Field)</td>
<td>Puyallup, Pierce Co.</td>
<td>Groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Fort Lewis (Landfill No. 5)³</td>
<td>Fort Lewis, Pierce Co.</td>
<td>Groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Fort Lewis Logistics Center</td>
<td>Fort Lewis, Pierce Co.</td>
<td>Groundwater</td>
<td>Heavy metals, others</td>
</tr>
<tr>
<td>Palermo Well Field</td>
<td>Tumwater, Thurston Co.</td>
<td>Soils, surface water, groundwater</td>
<td>Others</td>
</tr>
</tbody>
</table>

² Cleanup activities considered complete with some sites removed from the National Priorities List.